Algebraic structure of lepton and quark flavor invariants and $C P$ violation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
JHEP10(2009)094
(http://iopscience.iop.org/1126-6708/2009/10/094)
The Table of Contents and more related content is available

Download details:
IP Address: 80.92.225.132
The article was downloaded on 01/04/2010 at 13:36

Please note that terms and conditions apply.

# Algebraic structure of lepton and quark flavor invariants and $C P$ violation 

Elizabeth E. Jenkins and Aneesh V. Manohar<br>Department of Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, U.S.A.<br>E-mail: ejenkins@ucsd.edu, amanohar@ucsd.edu

Abstract: Lepton and quark flavor invariants are studied, both in the Standard Model with a dimension five Majorana neutrino mass operator, and in the seesaw model. The ring of invariants in the lepton sector is highly non-trivial, with non-linear relations among the basic invariants. The invariants are classified for the Standard Model with two and three generations, and for the seesaw model with two generations, and the Hilbert series is computed. The seesaw model with three generations proved computationally too difficult for a complete solution. We give an invariant definition of the $C P$-violating angle $\bar{\vartheta}$ in the electroweak sector.

Keywords: Quark Masses and SM Parameters, Neutrino Physics, Global Symmetries, Standard Model

ArXiv ePrint: 0907.4763

## Contents

1 Introduction ..... 1
2 Flavor symmetries ..... 3
3 Masses, mixing angles and phases ..... 6
3.1 High-energy theory ..... 7
3.1.1 $\quad n_{g}^{\prime}=n_{g}$ ..... 7
3.1.2 $n_{g}^{\prime}<n_{g}$ ..... 11
3.1.3 $n_{g}^{\prime}>n_{g}$ ..... 12
3.2 Low-energy effective theory ..... 12
4 Invariant theory ..... 13
4.1 Symmetric polynomials ..... 15
4.2 Model I ..... 15
4.3 Model II ..... 18
4.4 Model III ..... 19
5 Quark invariants ..... 20
$5.1 n_{g}=2$ ..... 21
$5.2 n_{g}=3$ ..... 22
6 Lepton invariants for two generations ..... 26
6.1 The standard model effective theory ..... 26
6.2 The seesaw model ..... 28
7 Lepton invariants for three generations ..... 32
7.1 The standard model effective theory ..... 32
7.2 The seesaw model ..... 34
8 Conclusions ..... 36

## 1 Introduction

Flavor violation of quarks and leptons by Standard Model weak interactions is parameterized by unitary $3 \times 3$ matrices, the CKM matrix in the quark sector and the PMNS matrix in the lepton sector. The fundamental parameters in the Standard Model are the quark and charged lepton Yukawa coupling matrices and the flavor matrix of the dimension-five Majorana mass operator for neutrinos [1]. The fermion masses and mixing angles are derived quantities, obtained from the eigenvalues and eigenvectors of the flavor matrices in
the low-energy theory. In the mass eigenstate basis, one still has the freedom to make phase rotations on the fermions fields, which leads to the redefinition of the CKM matrix

$$
\begin{equation*}
V \rightarrow e^{-i \Phi_{U}} V e^{i \Phi_{D}} \tag{1.1}
\end{equation*}
$$

in the quark sector, where $\Phi_{U}=\operatorname{diag}\left(\phi_{u}, \phi_{c}, \phi_{t}\right)$ and $\Phi_{D}=\operatorname{diag}\left(\phi_{d}, \phi_{s}, \phi_{b}\right)$. Physical quantities are basis independent, and must be invariant under the rephasing eq. (1.1). CKM rephasing invariants have been studied extensively in the literature [2-5], the bestknown example being the $C P$-odd Jarlskog invariant $J=\operatorname{Im} V_{11} V_{22} V_{12}^{*} V_{21}^{*}$. Rephasing invariance also exists for the lepton mixing matrix. In a previous paper [5], we extended the analysis of rephasing invariants to give a complete classification of these invariants for the Standard Model, and for the seesaw model [6].

The parameterization of the flavor structure in terms of masses and mixing angles is convenient for computing decay rates and scattering amplitudes. However, if one wants to understand the origin of flavor structure, the more fundamental quantities are the flavor matrices in the Lagrangian from which the masses and mixing angles are derived by diagonalization. A well-known difficulty is that the flavor matrices are basis-dependent, since one can make unitary transformations on the quark and lepton fields in the Lagrangian. For example, the Yukawa matrix for charge $2 / 3$ quarks transforms as

$$
\begin{equation*}
Y_{U} \rightarrow \mathrm{U}_{U c}{ }^{T} Y_{U} \mathrm{U}_{Q} \tag{1.2}
\end{equation*}
$$

where $\mathrm{U}_{Q}$ and $\mathrm{U}_{U^{c}}$ are unitary transformations on the quark doublet and singlet fields. Observable quantities must be independent of this change of basis, i.e. invariant under eq. (1.2), and such quantities are sometimes referred to as weak basis invariants [7, 8]. One can check the predictions of a flavor model by comparing invariant quantities with their corresponding experimental values.

Classifying invariants also is important in analyzing theories which explain flavor by a dynamical mechanism. Examples of this type were studied in the early literature on unified theories [9, 10] in the context of understanding gauge symmetry breaking patterns by minimizing Higgs potentials. A recent example from flavor physics needing the classification of invariants can be found in ref. [11].

There is an extensive literature on quark and lepton invariants (see, e.g. [7, 8, 12-15]). The main emphasis in previous work has been the study of $C P$ violation. $C P$-violating invariants analogous to the Jarlskog invariant were written down. The vanishing of the $C P$-violating invariants was sufficient to guarantee the vanishing of $C P$ violation in the CKM and PMNS mixing matrices.

In this paper, we take a different approach, studying all the invariants, and treating the problem using the methods of invariant theory [16-18], which considers the ring of polynomials that are invariant under the action of a group. Polynomial invariants also are the relevant objects for physics applications, since an effective Lagrangian is written as a polynomial in the basic variables which describe the theory. ${ }^{1}$ A basic result of invariant theory is that the ring of invariants has a finite number of generators. There can be

[^0]non-trivial relations among the invariants, known as syzygies [19], so that the invariant ring need not be a free ring. The number of invariants of a given degree is encoded in the Hilbert series. The complete classification of the invariant ring is, in general, a very difficult computational problem.

We study the invariants of the Standard Model low-energy theory and the seesaw theory in both the quark and lepton sectors. In the quark sector, the complete structure of the invariant ring is given, and the relation between the polynomial invariants and rephasing invariants also is given. The structure of the invariant ring in the lepton sector is considerably more involved than in the quark sector. The classification of lepton invariants is given for the low-energy effective Standard Model theory for two and three generations. For the high-energy seesaw theory, the classification is given for two generations. For three generations, we have been unable to completely classify all the relations or to determine the Hilbert series because the problem is computationally too difficult. The simpler invariants (i.e. of small degree) are given for this case.

The paper is organized as follows. Section 2 defines the high-energy seesaw theory and its low-energy effective theory. The flavor-symmetry breaking matrices and $\vartheta$-angles of each theory are given, together with their transformation properties under flavor symmetry and $C P$. Section 3 defines the mass and mixing matrices of the high-energy and lowenergy theories, explains the counting of mixing angles and phases, and discusses rephasing invariance. Section 4 provides a brief introduction to the mathematics of invariant theory that we need for our analysis. Section 5 reviews the classification of the quark mass matrix invariants. Sections 6 and 7 consider the classification of lepton mass matrix invariants for two and three generations of fermions, respectively, in both the low-energy effective theory and the seesaw theory.

## 2 Flavor symmetries

We consider the $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ gauge theory with $n_{g}$ generations of Standard Model fermions and $n_{g}^{\prime}$ generations of gauge singlet fermions (neutrino singlets). The fermion multiplets are $Q_{i}=(\mathbf{3}, \mathbf{2})_{1 / 6}, U_{i}^{c}=(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}, D_{i}^{c}=(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3}, L_{i}=(\mathbf{1}, \mathbf{2})_{-1 / 2}$ and $E_{i}^{c}=(\mathbf{1}, \mathbf{1})_{1}, i=1, \ldots, n_{g}$, and $N_{I}^{c}=(\mathbf{1}, \mathbf{1})_{0}, I=1, \ldots, n_{g}^{\prime}$. All fermion multiplets are left-handed Weyl fields. The fermion multiplets with $n_{g}^{\prime}=n_{g}$ have a natural embedding in the $\mathbf{1 6}$ spinor representation of $\mathrm{SO}(10)$.

The flavor symmetry of the fermion sector of the high-energy theory is $\mathrm{SU}\left(n_{g}\right)^{5} \times$ $\mathrm{U}\left(n_{g}^{\prime}\right) \times \mathrm{U}(1)^{2}$, since there is a separate $\mathrm{SU}\left(n_{g}\right)$ flavor symmetry for each of the five multiplets $Q, U^{c}, D^{c}, L$ and $E^{c}$, a $\mathrm{U}\left(n_{g}^{\prime}\right)$ flavor symmetry for the singlets $N^{c}$, and two additional non-anomalous $\mathrm{U}(1)$ flavor symmetries. Out of the six possible $\mathrm{U}(1)$ symmetries, only three linear combinations are non-anomalous under $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ : $N^{c}$ number which is included in $\mathrm{U}\left(n_{g}^{\prime}\right),(B-L)$, and $\left(E^{c}+D^{c}-U^{c}\right)$ number. The three additional anomalous $\mathrm{U}(1)$ groups can be treated as symmetries if the three $\vartheta$-angles ${ }^{2} \vartheta_{3,2,1}$ of the $\mathrm{SU}(3), \mathrm{SU}(2)$

[^1]and $\mathrm{U}(1)$ gauge groups transform under arbitrary chiral phase transformations $\psi \rightarrow e^{i \alpha_{\psi}} \psi$ on the fields $\psi=Q, U^{c}, D^{c}, L$ and $E^{c}$ as
\[

$$
\begin{align*}
& \vartheta_{3} \rightarrow \vartheta_{3}-n_{g}\left(2 \alpha_{Q}+\alpha_{U^{c}}+\alpha_{D^{c}}\right) \\
& \vartheta_{2} \rightarrow \vartheta_{2}-n_{g}\left(3 \alpha_{Q}+\alpha_{L}\right)  \tag{2.1}\\
& \vartheta_{1} \rightarrow \vartheta_{1}-n_{g}\left(\frac{1}{6} \alpha_{Q}+\frac{4}{3} \alpha_{U^{c}}+\frac{1}{3} \alpha_{D^{c}}+\frac{1}{2} \alpha_{L}+\alpha_{E^{c}}\right)
\end{align*}
$$
\]

Eq. (2.1) does not depend on $n_{g}^{\prime}$ or $\alpha_{N^{c}}$, since $N^{c}$ are gauge singlets. With the transformation eq. (2.1), the chiral flavor symmetry becomes $\mathrm{U}\left(n_{g}\right)^{5} \times \mathrm{U}\left(n_{g}^{\prime}\right)$, with a separate flavor factor for each of the six fermion multiplets.

The $\mathrm{U}\left(n_{g}\right)^{5} \times \mathrm{U}\left(n_{g}^{\prime}\right)$ flavor symmetry of the fermion and gauge kinetic energy terms is explicitly broken by gauge-invariant renormalizable terms - Yukawa couplings between fermion multiplets and the Higgs doublet and Majorana mass terms of the fermion singlets. The flavor symmetry-breaking Lagrangian is given by

$$
\begin{align*}
\mathcal{L}= & -U_{i}^{c}\left(Y_{U}\right)_{i j} Q_{j} H-D_{i}^{c}\left(Y_{D}\right)_{i j} Q_{j} H^{\dagger} \\
& -E_{i}^{c}\left(Y_{E}\right)_{i j} L_{j} H^{\dagger}-N_{I}^{c}\left(Y_{\nu}\right)_{I j} L_{j} H \\
& -\frac{1}{2} N_{I}^{c} M_{I J} N_{J}^{c}+\text { h.c. }, \tag{2.2}
\end{align*}
$$

where $H=(1,2)_{1 / 2}$ is the Higgs doublet, and gauge and Lorentz indices have been suppressed. The Yukawa couplings $Y_{U, D, E}$ are $n_{g} \times n_{g}$ matrices, whereas the neutrino Yukawa coupling $Y_{\nu}$ is an $n_{g}^{\prime} \times n_{g}$ matrix. The singlet neutrino Majorana mass matrix $M$ is a symmetric $n_{g}^{\prime} \times n_{g}^{\prime}$ matrix. In the Standard Model without neutrino singlets, renormalizable terms proportional to $Y_{\nu}$ and $M$ are absent.

Under the chiral flavor symmetry transformations $\psi \rightarrow \mathcal{U}_{\psi} \psi$, where $\mathcal{U}_{\psi}$ are unitary matrices in flavor space for the fermion fields $\psi=Q, U^{c}, D^{c}, L, E^{c}$ and $N^{c}$, the Yukawa coupling matrices, the Majorana mass matrix and the $\vartheta$ angles transform as

$$
\begin{align*}
Y_{U} & \rightarrow \mathcal{U}_{U^{c}}{ }^{T} Y_{U} \mathcal{U}_{Q}, \\
Y_{D} & \rightarrow \mathcal{U}_{D^{c}}{ }^{T} Y_{D} \mathcal{U}_{Q}, \\
Y_{E} & \rightarrow \mathcal{U}_{E^{c}}{ }^{T} Y_{E} \mathcal{U}_{L}, \\
Y_{\nu} & \rightarrow \mathcal{U}_{N^{c}}{ }^{T} Y_{\nu} \mathcal{U}_{L}, \\
M & \rightarrow \mathcal{U}_{N^{c}}{ }^{T} M \mathcal{U}_{N^{c}}, \\
\vartheta_{3} & \rightarrow \vartheta_{3}-2 \arg \operatorname{det} \mathcal{U}_{Q}-\arg \operatorname{det} \mathcal{U}_{U^{c}}-\arg \operatorname{det} \mathcal{U}_{D^{c}}, \\
\vartheta_{2} & \rightarrow \vartheta_{2}-3 \arg \operatorname{det} \mathcal{U}_{Q}-\arg \operatorname{det} \mathcal{U}_{L},  \tag{2.3}\\
\vartheta_{1} & \rightarrow \vartheta_{1}-\frac{1}{6} \arg \operatorname{det} \mathcal{U}_{Q}-\frac{4}{3} \arg \operatorname{det} \mathcal{U}_{U^{c}}-\frac{1}{3} \arg \operatorname{det} \mathcal{U}_{D^{c}}-\frac{1}{2} \arg \operatorname{det} \mathcal{U}_{L}-\arg \operatorname{det} \mathcal{U}_{E^{c} .} .
\end{align*}
$$

Under $C P$, each matrix is transformed to its complex conjugate, and each $\vartheta$ angle changes sign,

$$
\begin{align*}
Y_{U, D, E, \nu} & \rightarrow Y_{U, D, E, \nu}^{*} \\
M & \rightarrow M^{*} \\
\vartheta_{1,2,3} & \rightarrow-\vartheta_{1,2,3} \tag{2.4}
\end{align*}
$$

Under the chiral flavor symmetry transformation, the $\vartheta$ angles are shifted by eq. (2.3). The invariant angle $\bar{\vartheta}_{\mathrm{QCD}}$ is defined by

$$
\begin{equation*}
\bar{\vartheta}_{\mathrm{QCD}}=\vartheta_{3}+\arg \operatorname{det} Y_{U}+\arg \operatorname{det} Y_{D} . \tag{2.5}
\end{equation*}
$$

The analogous angles $\bar{\vartheta}_{1,2}$ can not be separately defined, but one can define an invariant $\vartheta$-parameter in the electroweak sector

$$
\begin{equation*}
\bar{\vartheta}_{\mathrm{EW}}=\vartheta_{2}+2 \vartheta_{1}+\frac{8}{3} \arg \operatorname{det} Y_{U}+\frac{2}{3} \arg \operatorname{det} Y_{D}+2 \arg \operatorname{det} Y_{E} . \tag{2.6}
\end{equation*}
$$

After electroweak symmetry breaking, the QED $\vartheta$-angle is $2 \bar{\vartheta}_{\text {QED }}=\bar{\vartheta}_{\mathrm{EW}}$. The factor of two arises because the generators for a non-abelian gauge theory are normalized to $\operatorname{Tr} T^{a} T^{b}=\delta^{a b} / 2$.

In the absence of electroweak symmetry breaking, there are $n_{g}^{\prime}$ massive Majorana neutrino singlets with masses of $\mathcal{O}(M)$, the heavy Majorana neutrino mass scale, and all other fermions are strictly massless. It is natural that $M$ be of order the GUT scale, the scale at which the GUT gauge symmetry breaks to the Standard Model gauge group, under which the $N^{c}$ fields are uncharged. When the Higgs field gets a vacuum expectation value $v / \sqrt{2}$, the Yukawa matrices generate Dirac mass matrices for the quarks and leptons,

$$
\begin{equation*}
m_{U, D, E, \nu}=Y_{U, D, E, \nu} \frac{v}{\sqrt{2}}, \tag{2.7}
\end{equation*}
$$

with the same flavor transformation properties as the Yukawa couplings. The Dirac and Majorana mass matrices of the $\left(n_{g}+n_{g}^{\prime}\right)$ left-handed neutrino fields combine to form a neutrino mass term

$$
\begin{equation*}
-\frac{1}{2} \mathcal{N}_{\mathcal{I}}\left(M_{\mathcal{N}}\right)_{\mathcal{I J}} \mathcal{N}_{\mathcal{J}}, \quad 1 \leq \mathcal{I}, \mathcal{J} \leq n_{g}+n_{g}^{\prime} \tag{2.8}
\end{equation*}
$$

where the $\left(n_{g}+n_{g}^{\prime}\right) \times\left(n_{g}+n_{g}^{\prime}\right)$ neutrino mass matrix $M_{\mathcal{N}}$ is equal to the symmetric matrix

$$
M_{\mathcal{N}} \equiv\left(\begin{array}{cc}
0 & m_{\nu}{ }^{T}  \tag{2.9}\\
m_{\nu} & M
\end{array}\right) .
$$

The $\left(n_{g}+n_{g}^{\prime}\right)$ neutrino fields $\mathcal{N}_{\mathcal{I}}$ are $\left(\nu_{i}, N_{I}^{c}\right)$. The $\left(n_{g}+n_{g}^{\prime}\right)$ mass eigenstates of eq. (2.9) give the Majorana mass-eigenstate neutrino fields, which are linear combinations of $\nu_{i}$ and $N_{I}^{c}$. The heavy neutrinos with masses $\mathcal{O}(M)$ are predominantly $N^{c}$ with an $\mathcal{O}(v / M)$ admixture of $\nu$, and the light neutrinos with masses $\mathcal{O}\left(v^{2} / M\right)$ are predominantly $\nu$ with an $\mathcal{O}(v / M)$ admixture of $N^{c}$.

A low-energy effective field theory can be obtained from the seesaw theory by integrating out the $n_{g}^{\prime}$ heavy Majorana neutrino mass eigenstates. In this low-energy theory, the leading flavor symmetry-breaking Lagrangian is given by
$\mathcal{L}^{\mathrm{EFT}}=-U_{i}^{c}\left(Y_{U}\right)_{i j} Q_{j} H-D_{i}^{c}\left(Y_{D}\right)_{i j} Q_{j} H^{\dagger}-E_{i}^{c}\left(Y_{E}\right)_{i j} L_{j} H^{\dagger}+\frac{1}{2}\left(L_{i} H\right)\left(C_{5}\right)_{i j}\left(L_{j} H\right)+$ h.c.,
where the coefficient of the dimension-five operator [1] is given by

$$
\begin{equation*}
C_{5}=Y_{\nu}^{T} M^{-1} Y_{\nu} \tag{2.11}
\end{equation*}
$$

to lowest order in the $1 / M$ expansion. When the electroweak gauge symmetry breaks, the dimension-five operator yields an effective $n_{g} \times n_{g}$ Majorana mass matrix

$$
\begin{equation*}
m_{5}=-C_{5} v^{2} / 2 \tag{2.12}
\end{equation*}
$$

for the (primarily) weak doublet neutrinos. Under the flavor symmetries and $C P$, the flavor matrices $Y_{U, D, E}$ and $\vartheta$ angles $\vartheta_{1,2,3}$ of the low-energy effective theory transform under chiral flavor symmetry and $C P$ as in eq. (2.3) and eq. (2.4), respectively, whereas $C_{5}$ transforms as

$$
\begin{align*}
C_{5} & \rightarrow \mathcal{U}_{L}^{T} C_{5} \mathcal{U}_{L}, \\
C_{5} & \rightarrow C_{5}^{*}, \tag{2.13}
\end{align*}
$$

respectively.
We will analyze the flavor structure of both the seesaw theory and its low-energy effective theory. The analysis depends only on the flavor transformation properties of the Yukawa coupling and Majorana mass matrices (i.e. the fermion mass matrices). Thus, it applies to any theory which has Dirac and Majorana mass matrices with the same transformation properties as given here, regardless of whether the Dirac mass terms are proportional to Yukawa couplings in the theory, or are generated by some mechanism from more fundamental parameters of the theory.

## 3 Masses, mixing angles and phases

In this section, we define the mass and mixing parameters of the high-energy seesaw theory and its low-energy effective theory. Most of the section is a review of well-known results, and serves to define the parameters and notation which are needed later. The mass matrices of the high and low energy theories in the weak eigenstate basis are transformed to the mass eigenstate basis by flavor rotations to obtain the fermion masses and mixing matrices. The counting of mixing angles and phases for the case $n_{g}^{\prime}=n_{g}$ follows the analysis of ref. [5]. The counting of physical parameters is given here for the cases $n_{g}^{\prime}>n_{g}$ and $n_{g}^{\prime}<n_{g}$, for completeness. An alternative way of counting parameters, analogous to the counting of Goldstone bosons, is given in refs. [20, 21].

Any complex matrix $M$ can be written in the form $M=\mathrm{U} \Lambda \mathrm{U}^{\prime}$ where U and $\mathrm{U}^{\prime}$ are unitary matrices, and $\Lambda$ is a diagonal matrix with real, non-negative entries. If $M$ is also a symmetric matrix, then it can be written in the form $M=M^{T}=\mathrm{U}^{T} \Lambda \mathrm{U}$, where U is a unitary matrix.

### 3.1 High-energy theory

The flavor matrices of the high-energy seesaw theory are written in eq. (2.2) in the weak eigenstate basis. These flavor matrices are related to the mass eigenstate basis by

$$
\begin{align*}
Y_{U} & =\mathrm{U}_{U^{c}} \Lambda_{U} \mathrm{U}_{U} \\
Y_{D} & =\mathrm{U}_{D^{c}} \Lambda_{D} \mathrm{U}_{D} \\
Y_{E} & =\mathrm{U}_{E^{c}} \Lambda_{E} \mathrm{U}_{E} \\
Y_{\nu} & =\mathrm{U}_{N^{c}} \Lambda_{\nu} \mathrm{U}_{\nu} \\
M & =\mathrm{U}_{N^{c}}^{T} \Lambda_{N} \mathrm{U}_{N^{c}}^{\prime} \tag{3.1}
\end{align*}
$$

where $\Lambda_{U, D, E}, \Lambda_{\nu}$ and $\Lambda_{N}$ are $n_{g} \times n_{g}, n_{g}^{\prime} \times n_{g}$ and $n_{g}^{\prime} \times n_{g}^{\prime}$ diagonal matrices respectively, with real, non-negative entries; $\mathrm{U}_{U^{c}, D^{c}, E^{c}}$ and $\mathrm{U}_{U, D, E, \nu}$ are $n_{g} \times n_{g}$ unitary matrices, and $\mathrm{U}_{N^{c}}$ and $\mathrm{U}_{N^{c}}^{\prime}$ are $n_{g}^{\prime} \times n_{g}^{\prime}$ unitary matrices, which transform the mass eigenstate basis to the weak eigenstate basis. Performing the chiral flavor transformation eq. (2.3) with $\mathcal{U}_{U^{c}}{ }^{T}=\mathrm{U}_{U}{ }^{-1}, \mathcal{U}_{D^{c}}{ }^{T}=\mathrm{U}_{D}{ }^{-1}, \mathcal{U}_{E^{c}}{ }^{T}=\mathrm{U}_{E}{ }^{-1}, \mathcal{U}_{Q}=\mathrm{U}_{U}{ }^{-1}, \mathcal{U}_{L}=\mathrm{U}_{E}{ }^{-1}$, and $\mathcal{U}_{N^{c}}=\mathrm{U}_{N^{c}}{ }^{-1}$ brings the flavor matrices to the form

$$
\begin{align*}
Y_{U} & =\Lambda_{U} \\
Y_{D} & =\Lambda_{D} V_{\mathrm{CKM}}^{-1} \\
Y_{E} & =\Lambda_{E} \\
Y_{\nu} & =W^{-1} \Lambda_{\nu} V \\
M & =\Lambda_{N} \tag{3.2}
\end{align*}
$$

where $V_{\mathrm{CKM}} \equiv \mathrm{U}_{U} \mathrm{U}_{D}{ }^{-1}, V \equiv \mathrm{U}_{\nu} \mathrm{U}_{E}{ }^{-1}$ and $W \equiv \mathrm{U}_{N^{c}}{ }^{-1}\left(\mathrm{U}_{N^{c}}^{\prime}\right)^{T}$ are the three unitary matrices which describe flavor mixing in the seesaw theory. $V_{\mathrm{CKM}}$ is the Cabibbo-KobayashiMaskawa mixing matrix in the quark sector. As is well-known, this $n_{g} \times n_{g}$ matrix corresponds to the mismatch between the unitary field redefinitions on $U$ and $D$ in the quark doublets $Q$ required to diagonalize $Y_{U}$ and $Y_{D} . V$ is the analogue of the CKM matrix in the lepton sector; it is the $n_{g} \times n_{g}$ matrix corresponding to the mismatch between the unitary field redefinitions on $\nu$ and $E$ in the lepton doublets $L$ required to diagonalize $Y_{\nu}$ and $Y_{E}$. $W$ is an $n_{g}^{\prime} \times n_{g}^{\prime}$ mixing matrix in the lepton sector corresponding to the mismatch between the unitary field redefinitions on $N^{c}$ required to diagonalize $M$ and $Y_{\nu}$.

To proceed further, it is necessary to consider the three cases $n_{g}^{\prime}=n_{g}, n_{g}^{\prime}<n_{g}$ and $n_{g}^{\prime}>n_{g}$ individually. We first specialize to the case $n_{g}^{\prime}=n_{g}$ considered previously in ref. [5] and review the analysis given there. The analysis is then generalized to the cases $n_{g}^{\prime} \neq n_{g}$. The quark sector only depends on the number of quark generations $n_{g}$, but the lepton sector analysis depends on whether $n_{g}^{\prime}=n_{g}, n_{g}^{\prime}<n_{g}$ or $n_{g}^{\prime}>n_{g}$.

### 3.1.1 $\quad n_{g}^{\prime}=n_{g}$

The real diagonal matrices $\Lambda_{U, D, E, \nu, N}$ are invariant under the rephasings,

$$
\begin{align*}
\Lambda_{\psi} & \rightarrow e^{-i \Phi_{\psi}} \Lambda_{\psi} e^{i \Phi_{\psi}}, \psi=U, D, E, \\
\Lambda_{\nu} & \rightarrow e^{-i \Phi_{\nu}} \Lambda_{\nu} e^{i \Phi_{\nu}}, \\
\Lambda_{N} & \rightarrow \eta_{N} \Lambda_{N} \eta_{N}, \tag{3.3}
\end{align*}
$$

| Matrices | Masses | Angles | Phases |
| :---: | :---: | :---: | :---: |
| $\Lambda_{U}$ | $n_{g}$ | 0 | 0 |
| $\Lambda_{D}$ | $n_{g}$ | 0 | 0 |
| $V_{\mathrm{CKM}}$ | 0 | $\frac{1}{2} n_{g}\left(n_{g}-1\right)$ | $\frac{1}{2}\left(n_{g}-1\right)\left(n_{g}-2\right)$ |
| Total | $2 n_{g}$ | $\frac{1}{2} n_{g}\left(n_{g}-1\right)$ | $\frac{1}{2}\left(n_{g}-1\right)\left(n_{g}-2\right)$ |

Table 1. Parameters in the quark sector for $n_{g}$ generations. The $\Lambda_{U}$ and $\Lambda_{D}$ rows give the parameters if $Y_{U}$ or $Y_{D}$ are considered separately, and the third row gives the additional parameters if both $Y_{U}$ and $Y_{D}$ are considered together. There are $\left(n_{g}-1\right)^{2}$ mixing parameters (angles plus phases), and a total of $\left(n_{g}{ }^{2}+1\right)$ parameters.
where $\Phi_{U, D, E, \nu}$ are real diagonal matrices, and $\eta_{N}$ is a diagonal matrix with allowed eigenvalues $\pm 1$. Only $\pm 1$ rephasings are allowed for the Majorana fields $N^{c}$. Under these rephasings, the mixing matrices $V_{\mathrm{CKM}}, V$ and $W$ transform as

$$
\begin{align*}
V_{\mathrm{CKM}} & \rightarrow e^{-i \Phi_{U}} V_{\mathrm{CKM}} e^{i \Phi_{D}} \\
V & \rightarrow e^{-i \Phi_{\nu}} V e^{i \Phi_{E}} \\
W & \rightarrow e^{-i \Phi_{\nu}} W \eta_{N} \tag{3.4}
\end{align*}
$$

Quark sector. The parameter counting in the quark sector is well-known, and is summarized here for completeness. The matrices $\Lambda_{U}$ and $\Lambda_{D}$ each contain $n_{g}$ eigenvalues, which correspond to the $U$-quark and $D$-quark masses, respectively, and are $C P$ even. The quark mixing matrix $V_{\mathrm{CKM}}$ is an $n_{g} \times n_{g}$ unitary matrix with $n_{g}{ }^{2}$ parameters. It is conventional to divide these parameters into angles and phases - angles are even under $C P$, whereas phases are odd under $C P$. If the $V_{\text {CKM }}$ matrix is $C P$ invariant, it is an $n_{g} \times n_{g}$ real orthogonal matrix with $n_{g}\left(n_{g}-1\right) / 2$ parameters. The unitary matrix $V_{\text {CKM }}$ has $n_{g}\left(n_{g}-1\right) / 2$ angles and $n_{g}\left(n_{g}+1\right) / 2$ phases, and can be parametrized by

$$
\begin{equation*}
e^{i \chi} e^{i \Phi} \mathcal{V}\left(\theta_{i}, \delta_{i}\right) e^{i \Psi} \tag{3.5}
\end{equation*}
$$

where $\chi$ is an overall phase, $\Phi=\operatorname{diag}\left(0, \phi_{2}, \ldots, \phi_{n_{g}}\right)$, and $\Psi=\operatorname{diag}\left(0, \psi_{2}, \ldots, \psi_{n_{g}}\right)$. The phase redefinitions $\Phi_{U}$ and $\Phi_{D}$ of $V_{\text {CKM }}$ in eq. (3.4) can be chosen to remove the $2 n_{g}-1$ phases $\chi, \phi_{i}, \psi_{i}, i=2, \ldots, n_{g} .{ }^{3}$ Thus, $V_{\mathrm{CKM}}$ has $n_{g}\left(n_{g}+1\right) / 2-\left(2 n_{g}-1\right)=\left(n_{g}-1\right)\left(n_{g}-2\right) / 2$ net phases. This counting of parameters is summarized in table 1.

We choose a parameterization $V_{\text {CKM }}=\mathcal{V}\left(\theta_{i}, \delta_{i}\right)$ in terms of a standard functional form $\mathcal{V}$, where the $n_{g}\left(n_{g}-1\right) / 2$ angles $\theta_{i} \in[0, \pi / 2]$ and the $\left(n_{g}-1\right)\left(n_{g}-2\right) / 2$ phases $\delta_{i} \in[0,2 \pi)$. The CKM matrix for $n_{g}=3$ is given by [22]

$$
\mathcal{V}\left(\theta_{12}, \theta_{13}, \theta_{23}, \delta\right) \equiv\left[\begin{array}{ccc}
1 & 0 & 0  \tag{3.6}\\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right]\left[\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right]\left[\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

where $s_{i} \equiv \sin \theta_{i}$ and $c_{i} \equiv \cos \theta_{i}$. It is now conventional to call the angles $\theta_{23}, \theta_{13}, \theta_{12}$ rather than $\theta_{1}, \theta_{2}, \theta_{3}$. The standard form eq. (3.6) has $\operatorname{det} \mathcal{V}=1$.

[^2]Lepton sector. The matrices $\Lambda_{N}$ and $\Lambda_{E}$ each have $n_{g}$ eigenvalues which are $C P$ even. The lepton mixing matrices $V$ and $W$ are $n_{g} \times n_{g}$ unitary matrices, which can be parametrized by

$$
\begin{align*}
V & =e^{i \chi} e^{i \Phi} \mathcal{V}\left(\theta_{i}, \delta_{i}\right) e^{i \Psi / 2} \\
W & =e^{i \chi^{\prime}} e^{i \Phi^{\prime}} \mathcal{V}\left(\theta_{i}^{\prime}, \delta_{i}^{\prime}\right) e^{i \Psi^{\prime} / 2} \tag{3.7}
\end{align*}
$$

We use the same standard functional form $\mathcal{V}$ as for the quark sector, but with different numerical values for the arguments $\theta_{i}$ and $\delta_{i} .{ }^{4}$ The factor of two in $\Psi$ and $\Psi^{\prime}$ will be explained below.

The rephasing transformations $\Phi_{\nu}, \Phi_{E}$ and $\eta_{N}$ of eq. (3.4) can be used to (i) eliminate $\chi, \chi^{\prime}$ and $\psi_{i}$, (ii) restrict $\psi_{i}^{\prime}$ to the range $[0,2 \pi)$ rather than $[0,4 \pi)$, and (iii) eliminate either $\Phi$ or $\Phi^{\prime}$, but not both. It is convenient to use the same domain $[0,2 \pi)$ for all phases, which is why $\Psi^{\prime}$ was scaled by a factor of 2 .

First consider amplitudes which depend only on $Y_{\nu}$ and $Y_{E}$, but not on $M$. In this case, the mixing matrix $W$ is no longer observable and can be set to unity. The mixing matrix $V$ has $\left(2 n_{g}-1\right)$ allowed phase redefinitions: $n$ from $\Phi_{\nu}, n$ from $\Phi_{E}$, and minus one, because $\Phi_{\nu}=\Phi_{E} \propto \mathbb{1}$ does not change $V$. Thus, the parameter counting for the mixing matrix $V$ is identical to that for $V_{\mathrm{CKM}}$ in the quark sector, with $n_{g}\left(n_{g}-1\right) / 2$ angles, and $\left(n_{g}-1\right)\left(n_{g}-2\right) / 2$ phases. Similarly, for amplitudes depending only on $M$ and $Y_{\nu}$ and not on $Y_{E}$, the mixing matrix $V$ is no longer observable and can be set to unity. The mixing matrix $W$ has $n_{g}$ allowed phase redefinitions $\Phi_{\nu}$. Thus, there are $n_{g}\left(n_{g}-1\right) / 2$ angles and $n_{g}\left(n_{g}+1\right) / 2-n_{g}=n_{g}\left(n_{g}-1\right) / 2$ phases. If the three matrices $M, Y_{\nu}$ and $Y_{E}$ are considered together, then the mixing matrices $V$ and $W$ together can have $2 n_{g}$ allowed phase redefinitions due to $\Phi_{\nu}$ and $\Phi_{E}$. As compared with the case of only $V$ or only $W$, where there were $2 n_{g}-1+n_{g}$ phase redefinitions possible, we have $\left(n_{g}-1\right)$ fewer phase redefinitions, and hence ( $n_{g}-1$ ) additional observable phases. These ( $n_{g}-1$ ) additional phases occur because the same phase redefinition $\Phi_{\nu}$ was present for both $V$ and $W$, and so cannot be chosen to remove phases from both $V$ and $W$. Thus, there are an additional $\left(n_{g}-1\right)$ phases if all three mass matrices are considered together. These phases can be included in either $V$ or $W$. The standard form of the mixing matrices which uses the $\Phi_{\nu}$ phases to eliminate the $\Phi$ phases from $V$ is given by

$$
\begin{align*}
V & =\mathcal{V}\left(\theta_{i}, \delta_{i}\right), \\
W & =e^{-i \bar{\Phi}} \mathcal{V}\left(\theta_{i}^{\prime}, \delta_{i}^{\prime}\right) e^{i \Psi^{\prime} / 2}, \tag{3.8}
\end{align*}
$$

whereas the standard form of the mixing matrices which uses the $\Phi_{\nu}$ phases to eliminate the $\Phi^{\prime}$ phases from $W$ is given by

$$
\begin{align*}
V & =e^{i \bar{\Phi}} \mathcal{V}\left(\theta_{i}, \delta_{i}\right), \\
W & =\mathcal{V}\left(\theta_{i}^{\prime}, \delta_{i}^{\prime}\right) e^{i \Psi^{\prime} / 2} \tag{3.9}
\end{align*}
$$

[^3]| Matrices | Masses | Angles | Phases |
| :---: | :---: | :---: | :---: |
| $\Lambda_{N}$ | $n_{g}$ | 0 | 0 |
| $\Lambda_{\nu}$ | $n_{g}$ | 0 | 0 |
| $\Lambda_{E}$ | $n_{g}$ | 0 | 0 |
| $V: Y_{\nu}, Y_{E}$ | 0 | $\frac{1}{2} n_{g}\left(n_{g}-1\right)$ | $\frac{1}{2}\left(n_{g}-1\right)\left(n_{g}-2\right)$ |
| $W: M, Y_{\nu}$ | 0 | $\frac{1}{2} n_{g}\left(n_{g}-1\right)$ | $\frac{1}{2} n_{g}\left(n_{g}-1\right)$ |
| $\bar{\Phi} \not \propto \mathbb{1}$ | 0 | 0 | $n_{g}-1$ |
| Total | $3 n_{g}$ | $n_{g}\left(n_{g}-1\right)$ | $n_{g}\left(n_{g}-1\right)$ |

Table 2. Parameters in the lepton sector for $n_{g}^{\prime}=n_{g}$ generations. The $\Lambda_{N}, \Lambda_{\nu}$ and $\Lambda_{E}$ rows give the parameters if $M$ or $Y_{\nu}$ or $Y_{E}$ are considered separately. The $V$ and $W$ rows give the additional parameters if both $Y_{\nu}$ and $Y_{E}$, or both $M$ and $Y_{\nu}$ are considered together, respectively. The last row gives the additional parameters to those in the previous rows when all three matrices $M, Y_{\nu}$ and $Y_{E}$ are considered together. There are $2 n_{g}\left(n_{g}-1\right)$ mixing parameters (angles and phases), and a total of $n_{g}\left(2 n_{g}+1\right)$ parameters.

| Matrices | Masses | Angles | Phases |
| :---: | :---: | :---: | :---: |
| $\Lambda_{N}$ | $n_{g}^{\prime}$ | 0 | 0 |
| $\Lambda_{\nu}$ | $n_{g}^{\prime}$ | 0 | 0 |
| $\Lambda_{E}$ | $n_{g}$ | 0 | 0 |
| $V: Y_{\nu}, Y_{E}$ | 0 | $\frac{1}{2} n_{g}\left(n_{g}-1\right)$ | $\frac{1}{2} n_{g}\left(n_{g}-1\right)-n_{g}^{\prime}+1$ |
| $W: M, Y_{\nu}$ | 0 | $\frac{1}{2} n_{g}^{\prime}\left(n_{g}^{\prime}-1\right)$ | $\frac{1}{2} n_{g}^{\prime}\left(n_{g}^{\prime}-1\right)$ |
| $\bar{\Phi} \nless \mathbb{1}$ | 0 | 0 | $n_{g}^{\prime}-1$ |
| $U_{n_{g}-n_{g}^{\prime}}$ | 0 | $\frac{1}{2}\left(n_{g}-n_{g}^{\prime}\right)\left(n_{g}-n_{g}^{\prime}-1\right)$ | $\frac{1}{2}\left(n_{g}-n_{g}^{\prime}\right)\left(n_{g}-n_{g}^{\prime}+1\right)$ |
| Total | $n_{g}+2 n_{g}^{\prime}$ | $n_{g} n_{g}^{\prime}-n_{g}^{\prime}$ | $n_{g} n_{g}^{\prime}-n_{g}$ |

Table 3. Parameters in the lepton sector for $n_{g}$ fermion generations and $n_{g}^{\prime}<n_{g}$ neutrino singlets. The total number of parameters is equal to the sum of the first six rows minus the last row. The parameters in $U_{n_{g}-n_{g}^{\prime}}$ are removed from $V$.

In eq. (3.8), $V$ has the canonical CKM form with $n_{g}\left(n_{g}-1\right) / 2$ angles $\theta_{i}$ and $\left(n_{g}-1\right)\left(n_{g}-2\right) / 2$ phases $\delta_{i}$, whereas in eq. (3.9), $W$ has the canonical PMNS form with $n_{g}\left(n_{g}-1\right) / 2$ angles $\theta_{i}^{\prime}$ and $n_{g}\left(n_{g}-1\right) / 2$ phases consisting of the $\left(n_{g}-1\right)\left(n_{g}-2\right) / 2$ phases $\delta_{i}$ and the $\left(n_{g}-1\right)$ phases $\psi_{i}^{\prime}$. In either basis, there are $\left(n_{g}-1\right)$ additional phases $\bar{\Phi} \equiv \Phi-\Phi^{\prime}$ which cannot be removed, and are observable. This parameter counting for $n_{g}^{\prime}=n_{g}$ is summarized in table 2.
$\vartheta$ angles. Once the mixing matrices have been put in standard form, one can perform additional phase rotations which leave the mixing matrices invariant to eliminate $\vartheta$ angles. The only allowed transformation is an overall phase rotation with $\Phi_{U}=\Phi_{D}=\phi_{Q} \mathbb{1}$, i.e.

| Matrices | Masses | Angles | Phases |
| :---: | :---: | :---: | :---: |
| $\Lambda_{N}$ | $n_{g}^{\prime}$ | 0 | 0 |
| $\Lambda_{\nu}$ | $n_{g}$ | 0 | 0 |
| $\Lambda_{E}$ | $n_{g}$ | 0 | 0 |
| $V: Y_{\nu}, Y_{E}$ | 0 | $\frac{1}{2} n_{g}\left(n_{g}-1\right)$ | $\frac{1}{2}\left(n_{g}-1\right)\left(n_{g}-2\right)$ |
| $W: M, Y_{\nu}$ | 0 | $\frac{1}{2} n_{g}^{\prime}\left(n_{g}^{\prime}-1\right)$ | $\frac{1}{2} n_{g}^{\prime}\left(n_{g}^{\prime}+1\right)-n_{g}$ |
| $\bar{\Phi} \not \propto \mathbb{1}$ | 0 | 0 | $n_{g}-1$ |
| $U_{n_{g}^{\prime}-n_{g}}$ | 0 | $\frac{1}{2}\left(n_{g}^{\prime}-n_{g}\right)\left(n_{g}^{\prime}-n_{g}-1\right)$ | $\frac{1}{2}\left(n_{g}^{\prime}-n_{g}\right)\left(n_{g}^{\prime}-n_{g}+1\right)$ |
| Total | $2 n_{g}+n_{g}^{\prime}$ | $n_{g} n_{g}^{\prime}-n_{g}$ | $n_{g} n_{g}^{\prime}-n_{g}$ |

Table 4. Parameters in the lepton sector for $n_{g}$ fermion generations and $n_{g}^{\prime}>n_{g}$ neutrino singlets. The total number of parameters is equal to the sum of the first six rows minus the last row. The parameters in $U_{n_{g}^{\prime}-n_{g}}$ are removed from $W$.
baryon number. Under this phase transformation,

$$
\begin{align*}
& \vartheta_{3} \rightarrow \vartheta_{3} \\
& \vartheta_{2} \rightarrow \vartheta_{2}-3 n_{g} \phi_{Q} \\
& \vartheta_{1} \rightarrow \vartheta_{1}+\frac{3}{2} n_{g} \phi_{Q} \tag{3.10}
\end{align*}
$$

The transformation leaves $\vartheta_{3}$ and $\vartheta_{2}+2 \vartheta_{1}$ unchanged, so there are two physical $\vartheta$ angles remaining: $\bar{\vartheta}_{\mathrm{QCD}}$, the strong interaction $C P$-angle in the basis where the quark mass matrices are real and diagonal, and $\bar{\vartheta}_{E W}=\vartheta_{2}+2 \vartheta_{1}$, the electroweak $C P$-angle in the basis where the quark and charged lepton mass matrices are real and diagonal.

### 3.1.2 $n_{g}^{\prime}<n_{g}$

For $n_{g}^{\prime}<n_{g}$, the $n_{g}^{\prime} \times n_{g}$ diagonal matrix $\Lambda_{\nu}$ can be written as

$$
\Lambda_{\nu} \equiv\left[\begin{array}{ll}
\bar{\Lambda}_{\nu} & 0 \tag{3.11}
\end{array}\right]
$$

where 0 denotes the $n_{g}^{\prime} \times\left(n_{g}-n_{g}^{\prime}\right)$ zero matrix, and $\bar{\Lambda}_{\nu}$ is a diagonal $n_{g}^{\prime} \times n_{g}^{\prime}$ matrix with $n_{g}^{\prime}$ real non-negative eigenvalues. This matrix is invariant under

$$
\left[\begin{array}{ll}
\bar{\Lambda}_{\nu} & 0
\end{array}\right] \rightarrow e^{-i \Phi_{\nu}}\left[\begin{array}{ll}
\bar{\Lambda}_{\nu} & 0
\end{array}\right]\left[\begin{array}{cc}
e^{i \Phi_{\nu}} & 0  \tag{3.12}\\
0 & U_{n_{g}-n_{g}^{\prime}}
\end{array}\right]
$$

where $U_{n_{g}-n_{g}^{\prime}}$ denotes an arbitrary $\left(n_{g}-n_{g}^{\prime}\right) \times\left(n_{g}-n_{g}^{\prime}\right)$ unitary matrix. The rephasing transformations of the lepton mixing matrices are

$$
\begin{align*}
V & \rightarrow\left[\begin{array}{cc}
e^{-i \Phi_{\nu}} & 0 \\
0 & U_{n_{g}-n_{g}^{\prime}}^{-1}
\end{array}\right] V e^{i \Phi_{E}}, \\
W & \rightarrow e^{-i \Phi_{\nu}} W \eta_{N} \tag{3.13}
\end{align*}
$$

instead of eq. (3.4).

The additional unitary transformation matrix in eq. (3.13) can be used to eliminate parameters in $V$. The parameter counting for $n_{g}^{\prime}<n_{g}$ is summarized in table 3. The number of $C P$-even parameters is $\left(n_{g} n_{g}^{\prime}+n_{g}+n_{g}^{\prime}\right)$ and the number of $C P$-odd parameters is $\left(n_{g} n_{g}^{\prime}-n_{g}\right)$, consistent with the results of ref. [21].

### 3.1.3 $n_{g}^{\prime}>n_{g}$

For $n_{g}^{\prime}>n_{g}$, the $n_{g}^{\prime} \times n_{g}$ diagonal matrix $\Lambda_{\nu}$ can be written as

$$
\Lambda_{\nu} \equiv\left[\begin{array}{c}
\bar{\Lambda}_{\nu}  \tag{3.14}\\
0
\end{array}\right]
$$

where 0 denotes the $\left(n_{g}^{\prime}-n_{g}\right) \times n_{g}$ zero matrix, and $\bar{\Lambda}_{\nu}$ is a diagonal $n_{g} \times n_{g}$ matrix with $n_{g}$ real positive eigenvalues. This matrix is invariant under

$$
\left[\begin{array}{c}
\bar{\Lambda}_{\nu}  \tag{3.15}\\
0
\end{array}\right] \rightarrow\left[\begin{array}{cc}
e^{-i \Phi_{\nu}} & 0 \\
0 & U_{n_{g}^{\prime}-n_{g}}
\end{array}\right]\left[\begin{array}{c}
\bar{\Lambda}_{\nu} \\
0
\end{array}\right] e^{i \Phi_{\nu}},
$$

where $U_{n_{g}^{\prime}-n_{g}}$ denotes an arbitrary $\left(n_{g}^{\prime}-n_{g}\right) \times\left(n_{g}^{\prime}-n_{g}\right)$ unitary matrix. The rephasing transformation of the lepton mixing matrices is

$$
\begin{align*}
V & \rightarrow e^{-i \Phi_{\nu}} V e^{i \Phi_{E}}, \\
W & \rightarrow\left[\begin{array}{cc}
e^{-i \Phi_{\nu}} & 0 \\
0 & U_{n_{g}^{\prime}-n_{g}}
\end{array}\right] W \eta_{N}, \tag{3.16}
\end{align*}
$$

instead of eq. (3.4).
The additional unitary transformation matrix in eq. (3.16) can be used to eliminate parameters in $W$. The parameter counting for $n_{g}^{\prime}>n_{g}$ is summarized in table 4. The number of $C P$-even parameters is $\left(n_{g} n_{g}^{\prime}+n_{g}+n_{g}^{\prime}\right)$ and the number of $C P$-odd parameters is $\left(n_{g} n_{g}^{\prime}-n_{g}\right)$, consistent with the results of ref. [21].

### 3.2 Low-energy effective theory

The flavor matrices in the low-energy effective theory are written in eq. (2.10) in the weak eigenstate basis. These matrices are related to the mass eigenstate basis by

$$
\begin{align*}
Y_{U} & =\mathrm{U}_{U^{c}} \Lambda_{U} \mathrm{U}_{U}, \\
Y_{D} & =\mathrm{U}_{D^{c}} \Lambda_{D} \mathrm{U}_{D}, \\
Y_{E} & =\mathrm{U}_{E^{c}} \Lambda_{E} \mathrm{U}_{E}, \\
C_{5} & =\mathrm{U}_{\nu}^{T} \Lambda_{5} \mathrm{U}_{\nu}^{\prime} . \tag{3.17}
\end{align*}
$$

Performing chiral flavor transformations in the low-energy theory with $\mathcal{U}_{U^{c}}{ }^{T}=\mathrm{U}_{U^{c}}{ }^{-1}$, $\mathcal{U}_{D^{c}}{ }^{T}=U_{D^{c}}{ }^{-1}, \mathcal{U}_{E c}{ }^{T}=U_{E^{c}}{ }^{-1}, \mathcal{U}_{Q}=U_{U}{ }^{-1}, \mathcal{U}_{L}=U_{E}{ }^{-1}$ brings the flavor matrices to
the form

$$
\begin{align*}
Y_{U} & =\Lambda_{U}, \\
Y_{D} & =\Lambda_{D} V_{\mathrm{CKM}}^{-1}, \\
Y_{E} & =\Lambda_{E}, \\
C_{5} & =\left(U_{\mathrm{PMNS}}^{-1}\right)^{T} \Lambda_{5} U_{\mathrm{PMNS}}^{-1}, \tag{3.18}
\end{align*}
$$

where $V_{\mathrm{CKM}} \equiv \mathrm{U}_{U} \mathrm{U}_{D}{ }^{-1}$ and $\mathrm{U}_{\mathrm{PMNS}}^{-1} \equiv \mathrm{U}_{\nu}^{\prime} \mathrm{U}_{E}{ }^{-1}$ are the two unitary matrices which describe flavor mixing in the low-energy effective theory. $V_{\text {CKM }}$ is the CKM mixing matrix in the quark sector. $U_{\text {PMNS }}$ is the PMNS mixing matrix in the lepton sector, which is the lepton mixing matrix which is physically measurable at low energies.

The real diagonal matrices $\Lambda_{U, D, E, 5}$ are invariant under the rephasings

$$
\begin{align*}
& \Lambda_{\psi} \rightarrow e^{-i \Phi_{\psi}} \Lambda_{\psi} e^{i \Phi_{\psi}}, \psi=U, D, E, \\
& \Lambda_{5} \rightarrow \eta_{\nu} \Lambda_{5} \eta_{\nu} \tag{3.19}
\end{align*}
$$

which correspond to arbitrary phase redefinitions of the fermion mass eigenstate fields $U^{c}$, $D^{c}, E^{c}, U, D$ and $E$, and the discrete rephasings $\nu \rightarrow \eta_{\nu} \nu$, where $\eta_{\nu}$ is a diagonal matrix with allowed eigenvalues $\pm 1$ for the low-energy Majorana neutrino fields. Under these rephasings, the mixing matrices of the effective theory transform as

$$
\begin{align*}
V_{\mathrm{CKM}} & \rightarrow e^{-i \Phi_{U}} V_{\mathrm{CKM}} e^{i \Phi_{D}}, \\
U_{\mathrm{PMNS}} & \rightarrow e^{-i \Phi_{E}} U_{\mathrm{PMNS}} \eta_{\nu} \tag{3.20}
\end{align*}
$$

The quark mixing matrix $V_{\text {CKM }}$ has the angles and phases given in table 1 as before. The counting of parameters in the lepton sector is summarized in table 5 , and is well-known. $U_{\text {PMNS }}$ contains $n_{g}\left(n_{g}-1\right) / 2$ angles $\theta_{i}$. The number of phases of $U_{\text {PMNS }}$ is $n_{g}\left(n_{g}+1\right) / 2$ minus the $n_{g}$ phase redefinitions $\Phi_{E}$, for a total of $n_{g}\left(n_{g}-1\right) / 2$ phases consisting of $\left(n_{g}-1\right)\left(n_{g}-2\right) / 2$ phases $\delta_{i}$ and $\left(n_{g}-1\right)$ phases $\psi_{i}$. The canonical parametrization of $U_{\text {PMNS }}$ is

$$
\begin{equation*}
U_{\mathrm{PMNS}}=\mathcal{V}\left(\theta_{i}, \delta_{i}\right) e^{i \Psi / 2} \tag{3.21}
\end{equation*}
$$

$\Psi=\operatorname{diag}\left(0, \psi_{2}, \ldots, \psi_{n}\right)$.
For $n_{g}=3$, the low-energy lepton mixing matrix is given by

$$
U_{\mathrm{PMNS}}=\mathcal{V}\left(\theta_{1}^{(U)}, \theta_{2}^{(U)}, \theta_{3}^{(U)}, \delta^{(U)}\right) \times\left(\begin{array}{ccc}
1 & 0 & 0  \tag{3.22}\\
0 & e^{i \psi_{2}^{(U)} / 2} & 0 \\
0 & 0 & e^{i \psi_{3}^{(U)} / 2}
\end{array}\right),
$$

where the superscript $(U)$ denotes quantities in the PMNS matrix.

## 4 Invariant theory

In the previous sections, we have discussed the parameters (masses, angles and phases) for the low- and high-energy theories. We would like to analyze the theories using invariant

| Matrices | Masses | Angles | Phases |
| :---: | :---: | :---: | :---: |
| $\Lambda_{E}$ | $n_{g}$ | 0 | 0 |
| $\Lambda_{5}$ | $n_{g}$ | 0 | 0 |
| $U_{\text {PMNS }}$ | 0 | $\frac{1}{2} n_{g}\left(n_{g}-1\right)$ | $\frac{1}{2} n_{g}\left(n_{g}-1\right)$ |
| Total | $2 n_{g}$ | $\frac{1}{2} n_{g}\left(n_{g}-1\right)$ | $\frac{1}{2} n_{g}\left(n_{g}-1\right)$ |

Table 5. Parameters in the lepton sector of the low-energy effective theory for $n_{g}$ generations. The $\Lambda_{E}$ and $\Lambda_{5}$ rows give the parameters if $m_{E}$ or $m_{5}$ are considered separately. The $U_{\text {PMNS }}$ row gives the mixing angles and phases of the PMNS mixing matrix.
quantities written directly in terms of the original parameters of the theory, the matrices $Y_{U, D, E, \nu}$ and $M$. The structure of the invariants is highly non-trivial, and depends in an interesting way on the number of generations.

To study the invariants, it is useful to introduce several mathematical results from invariant theory [16-18]. The general problem is the following: one has a set of variables $x_{1}, \ldots x_{n}$ which transform (reducibly or irreducibly) under the action of a group $G$. The set of polynomials in $\left\{x_{i}\right\}$ with complex coefficients form a ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. The polynomial ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is a free ring on the generators $x_{1}, \ldots, x_{n}$, i.e. it is given by taking linear combinations of all possible products of powers of the generators with coefficients in $\mathbb{C}$, and there are no non-trivial relations among the generators.

The ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{G} \subseteq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is the set of $G$-invariant polynomials, i.e. those polynomials which are unchanged by the action of $G$. This is clearly a ring, since sums and products of invariant polynomials are also invariant polynomials. A highly nontrivial result, if $G$ is a reductive group, ${ }^{5}$ is that $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{G}$ is finite generated. Let the generators be $I_{1}, \ldots, I_{r}$, each of which is a $G$-invariant polynomial in the original variables $x_{1}, \ldots, x_{n}$. Then, any $G$-invariant polynomial can be written as a polynomial $P \in$ $\mathbb{C}\left[I_{1}, \ldots, I_{r}\right]$. However, $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{G}$ need not be a free ring in the generators $I_{1}, \ldots, I_{r}$; there can be non-trivial relations among them.

In the following sections, we analyze the invariant ring for the quark and lepton sectors of the Standard Model effective theory and the seesaw model. It is useful to first look at some simple examples before discussing the case of interest. We start with a famous result on symmetric polynomials, and then discuss three examples involving continuous groups which are closer in structure to the quark and lepton invariant problem. The first model is a theory which has a freely generated ring, with no relations. The second theory has one non-trivial relation, and is similar in structure to the ring for quark invariants for three generations studied in section 5.2 and for lepton invariants in the Standard Model for two generations studied in section 6.1. The third example is only slightly more complicated, but leads to an intricate structure of invariants, with many relations, and a complicated

[^4]Hilbert series. This is similar to what we find for lepton invariants in the Standard Model for three generations, and in the seesaw model for two and three generations.

### 4.1 Symmetric polynomials

The classic example from invariant theory is the study of symmetric polynomials. The permutation group $S_{n}$ acts on a polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ by

$$
\begin{equation*}
p: f\left(x_{1}, \ldots, x_{n}\right) \rightarrow f\left(x_{p(1)}, \ldots, x_{p(n)}\right) \tag{4.1}
\end{equation*}
$$

where $(p(1), \ldots, p(n))$ is a permutation of $(1, \ldots, n)$. A polynomial in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$ is invariant under the action of any permutation. A standard result [23] is that the invariant ring is generated by the elementary symmetric polynomials

$$
\begin{align*}
I_{1} & =x_{1}+x_{2}+\cdots x_{n}=\sum_{i} x_{i} \\
I_{2} & =x_{1} x_{2}+x_{1} x_{3}+\cdots+x_{n-1} x_{n}=\sum_{i<j} x_{i} x_{j}, \\
I_{3} & =x_{1} x_{2} x_{3}+\cdots+x_{n-2} x_{n-1} x_{n}=\sum_{i<j<k} x_{i} x_{j} x_{k}, \\
& \vdots \\
I_{n} & =x_{1} x_{2} \ldots x_{n} . \tag{4.2}
\end{align*}
$$

In other words, any symmetric polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ can be written as a polynomial in $I_{1}, \ldots, I_{n}, f\left(x_{1}, \ldots, x_{n}\right)=g\left(I_{1}, \ldots, I_{n}\right)$, e.g.

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}=I_{1}^{2}-2 I_{2} . \tag{4.3}
\end{equation*}
$$

The important point is that $g\left(I_{1}, \ldots, I_{n}\right)$ is a polynomial - otherwise the result would be trivial, for knowing $I_{1}, \ldots, I_{n}$, one could solve eq. (4.2) to find $x_{1}, \ldots, x_{n}$, and hence determine $f$.

### 4.2 Model I

Consider a theory with two couplings $m_{1}$ and $m_{2}$ which transform under a $G=\mathrm{U}(1) \times \mathrm{U}(1)$ symmetry as

$$
\begin{equation*}
m_{1} \rightarrow e^{i \phi_{1}} m_{1}, \quad m_{2} \rightarrow e^{i \phi_{2}} m_{2} \tag{4.4}
\end{equation*}
$$

We look at the ring $\mathbb{C}\left[m_{1}, m_{1}^{*}, m_{2}, m_{2}^{*}\right]^{\mathrm{U}(1) \times \mathrm{U}(1)}$ of all polynomials which are $\mathrm{U}(1) \times \mathrm{U}(1)$ invariant. It is clear that they can be written as linear combinations of monomials of the form

$$
\begin{equation*}
\left(m_{1} m_{1}^{*}\right)^{r_{1}}\left(m_{2} m_{2}^{*}\right)^{r_{2}} \tag{4.5}
\end{equation*}
$$

where $r_{1}$ and $r_{2}$ are integers. Thus, the ring of invariant polynomials is generated by the invariants $I_{1}=m_{1} m_{1}^{*}$ and $I_{2}=m_{2} m_{2}^{*}$, and there are no relations between these generators.

The Hilbert series $H(q)$ is defined as

$$
\begin{equation*}
H(q)=\sum_{r=0}^{\infty} c_{r} q^{r} \tag{4.6}
\end{equation*}
$$

where $c_{r}$ is the number of invariants of degree $r$, and $c_{0}=1$. In our example, $c_{1}=0 ; c_{2}=2$ since $m_{1} m_{1}^{*}$ and $m_{2} m_{2}^{*}$ are the two degree-two invariants; $c_{3}=0 ; c_{4}=3$ since $\left(m_{1} m_{1}^{*}\right)^{2}$, $\left(m_{1} m_{1}^{*}\right)\left(m_{2} m_{2}^{*}\right)$ and $\left(m_{2} m_{2}^{*}\right)^{2}$ are the three degree-four invariants; and so on. It is easy to see that the Hilbert series is

$$
\begin{align*}
H(q) & =1+2 q^{2}+3 q^{4}+4 q^{6}+5 q^{8}+\cdots \\
& =\sum_{n=0}^{\infty}(n+1) q^{2 n} \\
& =\frac{1}{\left(1-q^{2}\right)^{2}} . \tag{4.7}
\end{align*}
$$

Another derivation of the Hilbert series is the following. The generators $I_{1}=m_{1} m_{1}^{*}$ and $I_{2}=m_{2} m_{2}^{*}$ are both of degree two, and the invariants of higher order are given by multiplying together arbitrary powers of $I_{1}$ and $I_{2}$. The product

$$
\begin{equation*}
\left(1+I_{1}+I_{1}^{2}+\cdots\right)\left(1+I_{2}+I_{2}^{2}+\cdots\right) \tag{4.8}
\end{equation*}
$$

gives each invariant once, which leads to the Hilbert series

$$
\begin{equation*}
H(q)=\left(1+q^{2}+q^{4}+\cdots\right)\left(1+q^{2}+q^{4}+\cdots\right)=\frac{1}{\left(1-q^{2}\right)^{2}}, \tag{4.9}
\end{equation*}
$$

in agreement with eq. (4.7).
In the general case of a semisimple Lie group, it is known that $H(q)$ has the rational form

$$
\begin{equation*}
H(q)=\frac{N(q)}{D(q)} \tag{4.10}
\end{equation*}
$$

where the numerator $N(q)$ and denominator $D(q)$ are polynomials. Furthermore, the numerator is of degree $d_{N}$ and is of the form

$$
\begin{equation*}
N(q)=1+c_{1} q+\cdots c_{d_{N}-1} q^{d_{N}-1}+q^{d_{N}} \tag{4.11}
\end{equation*}
$$

where the coefficients are non-negative, $c_{r} \geq 0$, and $N(q)$ is palindromic, i.e.

$$
\begin{equation*}
N(q)=q^{d_{N}} N(1 / q) \tag{4.12}
\end{equation*}
$$

or, more simply stated,

$$
\begin{equation*}
c_{r}=c_{d_{N}-r} . \tag{4.13}
\end{equation*}
$$

The denominator takes the form

$$
\begin{equation*}
D(q)=\prod_{r=1}^{p}\left(1-q^{d_{r}}\right), \tag{4.14}
\end{equation*}
$$

and is of degree $d_{D}=\sum_{r} d_{r}$. The number of denominator factors $p$ is equal to the number of parameters. The number of parameters is defined as the minimal codimension of an orbit, and agrees with the usual physics usage of the term.

Model I has $p=2$ parameters, because we start with four objects $m_{1}, m_{2}, m_{1}^{*}$ and $m_{2}^{*}$ (or equivalently, the real and imaginary parts of $m_{1}$ and $m_{2}$ ), and have two phase redefinitions eq. (4.4), which eliminates two variables. In other words, one can always make a phase redefinition to make $m_{1}$ and $m_{2}$ real and non-negative, and these are the two independent parameters. In our example, $N(q)=1, d_{1}=d_{2}=2$ and the number of denominator factors is two. The number of denominator factors $p$ is equal to the number of parameters.

There is a theorem due to Knop [24] which says that

$$
\begin{equation*}
\operatorname{dim} V \geq d_{D}-d_{N} \geq p \tag{4.15}
\end{equation*}
$$

where $\operatorname{dim} V$ is the dimension of the vector space on which the group transformations act; $d_{D}$ and $d_{N}$ are the degrees of the denominator and numerator; and $p$ is the number of parameters. In most cases, the upper bound is an equality, but not always. (We will see an example for the quark invariants involving only the $U$-quark mass matrix.) In Model I, the vector space basis is $m_{1}, m_{1}^{*}, m_{2}, m_{2}^{*}$, so $\operatorname{dim} V=4, p=2, d_{N}=0$ and $d_{D}=\sum d_{r}=4$, and we see that Knop's theorem gives $4 \geq 4-0 \geq 2$, with an equality for the upper bound.

One also can construct a multi-graded Hilbert series. Let $c_{r_{1} r_{2} r_{3} r_{4}}$ be the number of invariants of order $r_{1}$ in $m_{1}$, order $r_{2}$ in $m_{1}^{*}$, order $r_{3}$ in $m_{2}$, and order $r_{4}$ in $m_{2}^{*}$. Then

$$
\begin{equation*}
h\left(q_{1}, q_{2}, q_{3}, q_{4}\right)=\sum c_{r_{1} r_{2} r_{3} r_{4} q_{1}^{r_{1}} q_{2}^{r_{2}} q_{3}^{r_{3}} q_{4}^{r_{4}}=\frac{1}{\left(1-q_{1} q_{2}\right)\left(1-q_{3} q_{4}\right)}, ., ~}^{\text {and }} \tag{4.16}
\end{equation*}
$$

and the usual Hilbert series is $H(q)=h(q, q, q, q)$. The multi-graded series gives more information about the structure of the invariants. However, it is important to remember that the results quoted above for $H(q)$, eqs. (4.10)-(4.15), do not hold in general for the multi-graded case.

The Hilbert series provides far more information than the number of invariants of each degree, given by the series expansion eq. (4.6). It encodes the structure of the invariant ring and the form of the relations between invariants, as will be seen from the examples considered below. Furthermore, the properties of the Hilbert series, such as eqs. (4.13), (4.14), (4.15) provide a strong constraint on the number of invariants. Computing invariants to high orders is, in general, a difficult task (i.e. the problem is not of polynomial complexity). One can determine the Hilbert series, and hence the invariants to arbitrarily high order, by computing some of the expansion coefficients $c_{r}$, and using the constraints on the Hilbert series to determine $H(q)$. There is no systematic procedure for doing this. One computes the number of invariants $c_{r}$ of degree $r$ for some values of $r$, which provide clues to the form of the numerator and denominator of the Hilbert series. Eventually, only a unique possible answer remains.

### 4.3 Model II

Consider a theory with couplings $m_{1}$ and $m_{2}$ with charges one and two, respectively, under a $G=\mathrm{U}(1)$ symmetry,

$$
\begin{equation*}
m_{1} \rightarrow e^{i \phi} m_{1}, \quad m_{2} \rightarrow e^{2 i \phi} m_{2} \tag{4.17}
\end{equation*}
$$

The ring of invariant polynomials $\mathbb{C}\left[m_{1}, m_{1}^{*}, m_{2}, m_{2}^{*}\right]^{\mathrm{U}(1)}$ is generated by the four basic invariants $I_{1}=m_{1} m_{1}^{*}, I_{2}=m_{2} m_{2}^{*}, I_{3}=m_{2} m_{1}^{* 2}$ and $I_{4}=m_{2}^{*} m_{1}^{2}$. These generators, however, are not all independent, since $I_{3} I_{4}=I_{1}^{2} I_{2}$, so that $\mathbb{C}\left[m_{1}, m_{1}^{*}, m_{2}, m_{2}^{*}\right]^{\mathrm{U}(1)}$ is not a free ring generated by $I_{1}$ through $I_{4}$.

It is straightforward to show that the multi-graded Hilbert series is

$$
\begin{equation*}
h\left(q_{1}, q_{2}, q_{3}, q_{4}\right)=\frac{1-q_{1}^{2} q_{2}^{2} q_{3} q_{4}}{\left(1-q_{1} q_{2}\right)\left(1-q_{3} q_{4}\right)\left(1-q_{3} q_{2}^{2}\right)\left(1-q_{4} q_{1}^{2}\right)} \tag{4.18}
\end{equation*}
$$

where $q_{1}, q_{2}, q_{3}$ and $q_{4}$ count powers of $m_{1}, m_{1}^{*}, m_{2}$ and $m_{2}^{*}$, respectively.
The denominator of the multi-graded Hilbert series is generated by the invariants $I_{1}$ through $I_{4}$, whereas the numerator compensates for the fact that $I_{3} I_{4}=I_{1}^{2} I_{2}$ counts as only one invariant at order $q_{1}^{2} q_{2}^{2} q_{3} q_{4}$. The numerator of the multi-graded Hilbert series does not have the special properties of the numerator of the Hilbert series $H(q)$ discussed in the previous example.

In this example, $\operatorname{dim} V=4, \operatorname{dim} G=1$, and there are three parameters since the phase transformation eq. (4.17) eliminates one of the original four real variables in $m_{1}$ and $m_{2}$. The Hilbert series $H(q)=h(q, q, q, q)$ is

$$
\begin{equation*}
H(q)=\frac{1+q^{3}}{\left(1-q^{2}\right)^{2}\left(1-q^{3}\right)} \tag{4.19}
\end{equation*}
$$

which has a palindromic numerator with $d_{N}=3$, and a denominator with $d_{D}=7$, and $p=3$ is equal to the number of denominator factors and to the number of parameters. Knop's theorem gives $4 \geq 7-3 \geq 3$, with an equality for the upper bound.

Expanding eq. (4.19) in a series in $q$ gives the number of invariants of each degree. We see that there are two generators of degree two, $I_{1}$ and $I_{2}$, and one generator of degree three, which can be chosen to be $I_{3}+I_{4}$, corresponding to the denominator factors $\left(1-q^{2}\right)^{2}$ and $\left(1-q^{3}\right)$, respectively. Expanding out the denominator would give a coefficient of $q^{3}$ of +1 . There are two invariants of degree three, $I_{3} \pm I_{4}$. The missing degree-three invariant $I_{3}-I_{4}$ is counted by the $+q^{3}$ term in the numerator, so that the coefficient of $q^{3}$ in the expansion of $H(q)$ is 2 . When the denominator factors are expanded in a series, they can occur to any power, so one can have arbitrary powers of $I_{1}, I_{2}$ and $I_{3}+I_{4}$. However, the $q^{3}$ factor in the numerator occurs only once. This means that powers of $I_{3}-I_{4}$ higher than the first can all be eliminated in terms of polynomials $P\left(I_{1}, I_{2}, I_{3}+I_{4}\right)$ which have already been included. This statement follows from the identity

$$
\begin{equation*}
\left(I_{3}-I_{4}\right)^{2}=\left(I_{3}+I_{4}\right)^{2}-4 I_{3} I_{4}=\left(I_{3}+I_{4}\right)^{2}-4 I_{1}^{2} I_{2} \tag{4.20}
\end{equation*}
$$

There exists a similar identity for the Jarlskog invariant which will be derived in section 5 .

The generator $I_{3}+I_{4}$ of the denominator is not homogeneous in the multi-grading; $I_{3}$ is of degree $q_{3} q_{2}^{2}$ and $I_{4}$ is of degree $q_{4} q_{1}^{2}$, which is why eq. (4.18) can not be written in a form similar to eq. (4.19) with positive coefficients in the numerator and one less generator in the denominator.

### 4.4 Model III

Consider yet another model with three couplings $m_{1}, m_{2}$ and $m_{3}$ with charges 1,2 and 3 , respectively, under a $U(1)$ symmetry,

$$
\begin{equation*}
m_{1} \rightarrow e^{i \phi} m_{1}, m_{2} \rightarrow e^{2 i \phi} m_{2}, m_{3} \rightarrow e^{3 i \phi} m_{3} \tag{4.21}
\end{equation*}
$$

The structure of the invariants is considerably more complicated than in the previous examples, even though the theory is only slightly more complicated. All the invariant polynomials are generated by thirteen invariant generators

$$
\begin{align*}
I_{1} & =m_{1} m_{1}^{*} \\
I_{2} & =m_{2} m_{2}^{*} \\
I_{3} & =m_{3} m_{3}^{*} \\
I_{4} & =m_{1}^{2} m_{2}^{*} \\
I_{5} & =m_{1}^{* 2} m_{2} \\
I_{6} & =m_{1}^{3} m_{3}^{*} \\
I_{7} & =m_{1}^{* 3} m_{3} \\
I_{8} & =m_{2}^{3} m_{3}^{* 2} \\
I_{9} & =m_{2}^{* 3} m_{3}^{2} \\
I_{10} & =m_{1} m_{2} m_{3}^{*} \\
I_{11} & =m_{1}^{*} m_{2}^{*} m_{3} \\
I_{12} & =m_{1} m_{3} m_{2}^{* 2} \\
I_{13} & =m_{1}^{*} m_{3}^{*} m_{2}^{2} \tag{4.22}
\end{align*}
$$

There are 35 relations between products of invariants $I_{i} I_{j}$ given by: $I_{4} I_{5}=I_{1}^{2} I_{2}, I_{4} I_{7}=$ $I_{1}^{2} I_{11}, I_{4} I_{8}=I_{2} I_{10}^{2}, I_{4} I_{9}=I_{12}^{2}, I_{4} I_{10}=I_{2} I_{6}, I_{4} I_{11}=I_{1} I_{12}, I_{4} I_{13}=I_{1} I_{2} I_{10}, I_{5} I_{6}=I_{1}^{2} I_{10}$, $I_{5} I_{8}=I_{13}^{2}, I_{5} I_{9}=I_{2} I_{11}^{2}, I_{5} I_{10}=I_{1} I_{13}, I_{5} I_{11}=I_{2} I_{7}, I_{5} I_{12}=I_{1} I_{2} I_{11}, I_{6} I_{7}=I_{1}^{3} I_{3}$, $I_{6} I_{8}=I_{10}^{3}, I_{6} I_{9}=I_{3} I_{4} I_{12}, I_{6} I_{11}=I_{1} I_{3} I_{4}, I_{6} I_{12}=I_{3} I_{4}^{2}, I_{6} I_{13}=I_{1} I_{10}^{2}, I_{7} I_{8}=I_{3} I_{5} I_{13}$, $I_{7} I_{9}=I_{11}^{3}, I_{7} I_{10}=I_{1} I_{3} I_{5}, I_{7} I_{12}=I_{1} I_{11}^{2}, I_{7} I_{13}=I_{3} I_{5}^{2}, I_{8} I_{9}=I_{2}^{3} I_{3}^{2}, I_{8} I_{11}=I_{2} I_{3} I_{13}$, $I_{8} I_{12}=I_{2}^{2} I_{3} I_{10}, I_{9} I_{10}=I_{2} I_{3} I_{12}, I_{9} I_{13}=I_{2}^{2} I_{3} I_{11}, I_{10} I_{11}=I_{1} I_{2} I_{3}, I_{10} I_{12}=I_{2} I_{3} I_{4}, I_{10} I_{13}=$ $I_{1} I_{8}, I_{11} I_{12}=I_{2} I_{3} I_{5}, I_{11} I_{13}=I_{2} I_{3} I_{5}$ and $I_{12} I_{13}=I_{1} I_{2}^{2} I_{3}$. The new feature here is that these relations are not independent - there are relations among the relations (known as syzygies in the mathematics literature), e.g. multiplying both sides of $I_{4} I_{7}=I_{1}^{2} I_{11}$ and $I_{5} I_{6}=I_{1}^{2} I_{10}$ gives

$$
\begin{equation*}
I_{4} I_{5} I_{6} I_{7}=I_{1}^{4} I_{10} I_{11} \tag{4.23}
\end{equation*}
$$

which is also obtained by multiplying the relations $I_{4} I_{5}=I_{1}^{2} I_{2}$ and $I_{6} I_{7}=I_{1}^{3} I_{3}$, and using $I_{10} I_{11}=I_{1} I_{2} I_{3}$. The Hilbert series is

$$
\begin{equation*}
H(q)=\frac{1+q^{2}+3 q^{3}+4 q^{4}+4 q^{5}+4 q^{6}+3 q^{7}+q^{8}+q^{10}}{\left(1-q^{2}\right)^{2}\left(1-q^{3}\right)\left(1-q^{4}\right)\left(1-q^{5}\right)} \tag{4.24}
\end{equation*}
$$

Here $\operatorname{dim} V=6, \operatorname{dim} G=1$, and the number of parameters is 5 . From the Hilbert series, $d_{N}=10, d_{D}=16$, and $p=5$. Knop's theorem gives $6 \geq 16-10 \geq 5$, with an equality for the upper bound.

There are thirteen invariants in eq. (4.22). However, there are only five denominator factors in eq. (4.24), so only five basic invariants, two of degree two, and one each of degrees three, four and five, generate a free ring. The other invariants must satisfy non-trivial relations (those given below eq. (4.22)), and this is reflected by the complicated numerator in eq. (4.24), which implies that the invariant ring has a non-trivial structure, with many relations. The different terms in the numerator show that there are many invariants which can be eliminated when raised to higher powers, or multiplied by lower order invariants, by relations analogous to eq. (4.20). There is one invariant of degree two (the $+q^{2}$ term), three in degree three (the $+3 q^{3}$ term), etc. This model shows that even a relatively simple theory can lead to a set of invariants with a complicated syzygy structure. The number of invariants and relations of each degree is encoded in the Hilbert series.

## 5 Quark invariants

We can now address the first problem of interest - flavor invariants in the quark sector. We are interested in polynomials in $m_{U}, m_{U}{ }^{\dagger}, m_{D}$ and $m_{D}{ }^{\dagger}$ where

$$
\begin{align*}
m_{U} & \rightarrow \mathcal{U}_{U c}^{T} m_{U} \mathcal{U}_{Q}, \\
m_{D} & \rightarrow \mathcal{U}_{D^{c}}^{T} m_{D} \mathcal{U}_{Q}, \tag{5.1}
\end{align*}
$$

under the chiral flavor transformations. ${ }^{6}$ To cancel $\mathcal{U}_{U^{c}}$ and $\mathcal{U}_{D^{c}}$, one must consider the combinations

$$
\begin{align*}
& X_{U} \equiv m_{U}{ }^{\dagger} m_{U} \\
& X_{D} \equiv m_{D}{ }^{\dagger} m_{D} \tag{5.2}
\end{align*}
$$

which both transform as adjoints

$$
\begin{equation*}
X_{U, D} \rightarrow \mathcal{U}_{Q}^{\dagger} X_{U, D} \mathcal{U}_{Q} \tag{5.3}
\end{equation*}
$$

Thus, the invariants are traces of products of $X_{U}$ and $X_{D}$. The structure of the invariants depends non-trivially on the number of generations, so we consider the cases $n_{g}=2$ and $n_{g}=3$ separately.

[^5]
## $5.1 \quad n_{g}=2$

First, consider invariants involving only $X_{U}$. The basic invariants are

$$
\begin{equation*}
\left\langle X_{U}\right\rangle,\left\langle X_{U}^{2}\right\rangle,\left\langle X_{U}^{3}\right\rangle, \ldots \tag{5.4}
\end{equation*}
$$

where $\langle *\rangle$ denotes a matrix trace. This series of traces terminates after $n_{g}$ terms for an $n_{g} \times n_{g}$ matrix, by the Cayley-Hamilton theorem which states that every matrix satisfies its characteristic equation. For an arbitrary $2 \times 2$ matrix $A$, the Cayley-Hamilton theorem gives

$$
\begin{equation*}
A^{2}=\langle A\rangle A+\frac{1}{2}\left[\left\langle A^{2}\right\rangle-\langle A\rangle^{2}\right] \mathbb{1} \tag{5.5}
\end{equation*}
$$

Taking the trace of both sides gives the trivial result $\left\langle A^{2}\right\rangle=\left\langle A^{2}\right\rangle$. Multiplying by $A$ and taking the trace implies

$$
\begin{equation*}
\left\langle A^{3}\right\rangle=\frac{3}{2}\langle A\rangle\left\langle A^{2}\right\rangle-\frac{1}{2}\langle A\rangle^{3} \tag{5.6}
\end{equation*}
$$

so that $\left\langle A^{n}\right\rangle, n \geq 3$ can be written in terms of $\langle A\rangle$ and $\left\langle A^{2}\right\rangle$. Thus, there are two independent invariants, $I_{2,0}=\left\langle X_{U}\right\rangle$ and $I_{4,0}=\left\langle X_{U}{ }^{2}\right\rangle$, which can be constructed from $X_{U}$ alone. Both of these invariants are $C P$ even. The two invariants contain the same information as the eigenvalues of $X_{U}$, i.e. the two $U$-type quark masses. For invariants constructed only from $m_{U}$, the number of parameters is $p=2$, the two eigenvalues of $X_{U}$. The vector space has $\operatorname{dim} V=8$, because $m_{U}$ and $m_{U}^{\dagger}$ are both $2 \times 2$ matrices, and $I_{2,0}$ and $I_{4,0}$ are of degree two and four, respectively, in $m_{U}$, so the Hilbert series is

$$
\begin{equation*}
H(q)=\frac{1}{\left(1-q^{2}\right)\left(1-q^{4}\right)} \tag{5.7}
\end{equation*}
$$

Here $d_{N}=0, d_{D}=6$ are the degrees of the numerator and denominator, respectively, and the number of denominator factors is $p=2$, which is equal to the number of parameters. Knop's theorem gives $8 \geq 6-0 \geq 2$, which holds, but this time the upper bound is not an equality.

Similarly, there are two independent $C P$-even invariants $I_{0,2}=\left\langle X_{D}\right\rangle$ and $I_{0,4}=\left\langle X_{D}{ }^{2}\right\rangle$ which involve only $X_{D}$. These two invariants contain the same information as the eigenvalues of $X_{D}$, namely the two $D$-type quark masses.

Invariants containing both $X_{U}$ and $X_{D}$ can be written as traces of the form

$$
\begin{equation*}
\left\langle X_{U}^{r_{1}} X_{D}^{s_{1}} X_{U}^{r_{2}} X_{D}^{s_{2}} \ldots\right\rangle \tag{5.8}
\end{equation*}
$$

for integers $r_{i}$ and $s_{i}$. The Cayley-Hamilton theorem for a $2 \times 2$ matrix, eq. (5.5), implies that all powers $r_{i}$ and $s_{i}$ greater than one in eq. (5.8) can be reduced, so we are left with traces of the form

$$
\begin{equation*}
\left\langle X_{U} X_{D} \ldots X_{U} X_{D}\right\rangle=\left\langle\left(X_{U} X_{D}\right)^{r}\right\rangle \tag{5.9}
\end{equation*}
$$

Again, invariants with $r>1$ can be rewritten in terms of lower order invariants, so there is only one independent invariant, $I_{2,2}=\left\langle X_{U} X_{D}\right\rangle$, which is $C P$ even.

In summary, the basic quark invariants for $n_{g}=2$ quark generations, which generate all the invariants, are:

$$
\begin{align*}
& I_{2,0}=\left\langle X_{U}\right\rangle=\left\langle m_{U}{ }^{\dagger} m_{U}\right\rangle, \\
& I_{0,2}=\left\langle X_{D}\right\rangle=\left\langle m_{D}^{\dagger} m_{D}\right\rangle, \\
& I_{4,0}=\left\langle X_{U}^{2}\right\rangle=\left\langle\left(m_{U}^{\dagger} m_{U}\right)^{2}\right\rangle, \\
& I_{2,2}=\left\langle X_{U} X_{D}\right\rangle=\left\langle m_{U}^{\dagger} m_{U} m_{D}^{\dagger} m_{D}\right\rangle, \\
& I_{0,4}=\left\langle X_{D}{ }^{2}\right\rangle=\left\langle\left(m_{D}{ }^{\dagger} m_{D}\right)^{2}\right\rangle . \tag{5.10}
\end{align*}
$$

Writing the invariants in terms of the usual quark masses and the Cabibbo angle gives

$$
\begin{align*}
I_{2,0} & =m_{u}^{2}+m_{c}^{2} \\
I_{0,2} & =m_{d}^{2}+m_{s}^{2} \\
I_{4,0} & =m_{u}^{4}+m_{c}^{4} \\
I_{2,2} & =m_{u}^{2} m_{s}^{2}+m_{c}^{2} m_{d}^{2}+\left(m_{s}^{2}-m_{d}^{2}\right)\left(m_{c}^{2}-m_{u}^{2}\right) \cos ^{2} \theta, \\
I_{0,4} & =m_{d}^{4}+m_{s}^{4} \tag{5.11}
\end{align*}
$$

Knowing the five invariants allows one to determine the four masses and $\theta$, because $m_{i} \geq 0$, and $\theta$ lies in the first quadrant.

Using $u$ and $d$ to count powers of $m_{U}$ and $m_{D}$ gives the multi-graded Hilbert series

$$
\begin{equation*}
h(u, d)=\frac{1}{\left(1-u^{2}\right)\left(1-u^{4}\right)\left(1-d^{2}\right)\left(1-d^{4}\right)\left(1-u^{2} d^{2}\right)} . \tag{5.12}
\end{equation*}
$$

The Hilbert series $H(q)=h(q, q)$ is

$$
\begin{equation*}
H(q)=\frac{1}{\left(1-q^{2}\right)^{2}\left(1-q^{4}\right)^{3}} . \tag{5.13}
\end{equation*}
$$

In this example, $p=5$ (four masses and one mixing angle, see table 1 ), $\operatorname{dim} V=16$, since there are four $2 \times 2$ matrices, $d_{N}=0$, and $d_{D}=16$. The number of denominator factors is the number of parameters, and Knop's theorem gives $16 \geq 16-0 \geq 5$, with the upper bound an equality.

The denominator factors in eq. (5.13) show that there are two generators of degree two, and three of degree four, which agrees with eq. (5.10).

If one started with $X_{U}$ and $X_{D}$ as the basic objects, then $\operatorname{dim} V=8$. In this case, the Hilbert series is given by replacing $q^{2} \rightarrow q$ in eq. (5.13), since we now count powers of $X_{U}, X_{D}$ rather than $m_{U}, m_{D}$, so $d_{N}=0, d_{D}=8$ and Knop's inequality becomes $8 \geq 8-0 \geq 5$.

## $5.2 n_{g}=3$

For an arbitrary $3 \times 3$ matrix $A$, the Cayley-Hamilton theorem states that

$$
\begin{equation*}
A^{3}=A^{2}\langle A\rangle-\frac{1}{2} A\left[\langle A\rangle^{2}-\left\langle A^{2}\right\rangle\right]+\frac{1}{6}\left[\langle A\rangle^{3}-3\left\langle A^{2}\right\rangle\langle A\rangle+2\left\langle A^{3}\right\rangle\right] \mathbb{1} . \tag{5.14}
\end{equation*}
$$

Taking the trace of both sides gives the trivial result $\left\langle A^{3}\right\rangle=\left\langle A^{3}\right\rangle$. Multiplying by $A$ and taking the trace gives

$$
\begin{equation*}
\left\langle A^{4}\right\rangle=\frac{1}{6}\langle A\rangle^{4}-\langle A\rangle^{2}\left\langle A^{2}\right\rangle+\frac{4}{3}\left\langle A^{3}\right\rangle\langle A\rangle+\frac{1}{2}\left\langle A^{2}\right\rangle^{2}, \tag{5.15}
\end{equation*}
$$

so that $\left\langle A^{n}\right\rangle, n \geq 4$ can be rewritten in terms of $\langle A\rangle,\left\langle A^{2}\right\rangle$, and $\left\langle A^{3}\right\rangle$.
Thus, the invariants involving $X_{U}$ alone are $I_{2,0}=\left\langle X_{U}\right\rangle, I_{4,0}=\left\langle X_{U}^{2}\right\rangle$ and $I_{6,0}=$ $\left\langle X_{U}{ }^{3}\right\rangle$, and invariants involving $X_{D}$ alone are $I_{0,2}=\left\langle X_{D}\right\rangle, I_{0,4}=\left\langle X_{D}{ }^{2}\right\rangle$ and $I_{0,6}=\left\langle X_{D}{ }^{3}\right\rangle$, all of which are $C P$ even.

Invariants containing both $X_{U}$ and $X_{D}$ are of the form eq. (5.8), but now with $r_{i}=1,2$ and $s_{i}=1,2$, so that one has traces of products of $X_{U}, X_{U}^{2}, X_{D}, X_{D}^{2}$. This restriction still leads to an infinite number of invariants. However, many of these invariants are not independent. For arbitrary $3 \times 3$ matrices $A, B$ and $C$, one has the identity

$$
\begin{align*}
0= & \langle A\rangle^{2}\langle B\rangle\langle C\rangle-\langle B C\rangle\langle A\rangle^{2}-2\langle A B\rangle\langle A\rangle\langle C\rangle \\
& -2\langle A C\rangle\langle A\rangle\langle B\rangle+2\langle A B C\rangle\langle A\rangle+2\langle A C B\rangle\langle A\rangle \\
& -\left\langle A^{2}\right\rangle\langle B\rangle\langle C\rangle+2\langle A B\rangle\langle A C\rangle+\left\langle A^{2}\right\rangle\langle B C\rangle \\
& +2\langle C\rangle\left\langle A^{2} B\right\rangle+2\langle B\rangle\left\langle A^{2} C\right\rangle-2\left\langle A^{2} B C\right\rangle \\
& -2\left\langle A^{2} C B\right\rangle-2\langle A B A C\rangle \tag{5.16}
\end{align*}
$$

which can be derived by substituting $A \rightarrow A+B+C$ into eq. (5.15), and picking out the order $A^{2} B C$ terms. This identity eliminates $\langle A B A C\rangle$, i.e. traces where the same matrix is repeated, so that in invariants eq. (5.8), $X_{U}, X_{U}{ }^{2}, X_{D}$ and $X_{D}{ }^{2}$ can each occur at most once. For example, $\left\langle X_{U} \ldots X_{U} \ldots\right\rangle$ can be replaced by $\left\langle X_{U}^{2} \ldots\right\rangle$, and $\left\langle X_{U}^{2} \ldots X_{U}^{2} \ldots\right\rangle$ can be replaced by $\left\langle X_{U}^{4} \ldots\right\rangle$, which can then be eliminated using eq. (5.14).

Writing out all of the possibilities gives the basic quark invariants for $n_{g}=3$ quark generations. There are $11 C P$-even invariants, ten of which are

$$
\begin{align*}
& I_{2,0}=\left\langle X_{U}\right\rangle \\
& I_{0,2}=\left\langle X_{D}\right\rangle \\
& I_{4,0}=\left\langle X_{U}^{2}\right\rangle \\
& I_{2,2}=\left\langle X_{U} X_{D}\right\rangle \\
& I_{0,4}=\left\langle X_{D}^{2}\right\rangle \\
& I_{6,0}=\left\langle X_{U}^{3}\right\rangle \\
& I_{4,2}=\left\langle X_{U}^{2} X_{D}\right\rangle \\
& I_{2,4}=\left\langle X_{U} X_{D}^{2}\right\rangle \\
& I_{0,6}=\left\langle X_{D}^{3}\right\rangle \\
& I_{4,4}=\left\langle X_{U}^{2} X_{D}^{2}\right\rangle \tag{5.17}
\end{align*}
$$

and one $C P$-odd invariant

$$
\begin{equation*}
I_{6,6}^{(-)}=\left\langle X_{U}^{2} X_{D}^{2} X_{U} X_{D}\right\rangle-\left\langle X_{D}^{2} X_{U}^{2} X_{D} X_{U}\right\rangle \tag{5.18}
\end{equation*}
$$

The eleventh $C P$-even invariant is

$$
\begin{equation*}
I_{6,6}^{(+)}=\left\langle X_{U}^{2} X_{D}^{2} X_{U} X_{D}\right\rangle+\left\langle X_{D}^{2} X_{U}^{2} X_{D} X_{U}\right\rangle \tag{5.19}
\end{equation*}
$$

All the invariants in the quark sector can be written as polynomials in these basic invariants.
The multi-graded and one-variable Hilbert series are

$$
\begin{align*}
h(u, d) & =\frac{1+u^{6} d^{6}}{\left(1-u^{2}\right)\left(1-u^{4}\right)\left(1-u^{6}\right)\left(1-d^{2}\right)\left(1-d^{4}\right)\left(1-d^{6}\right)\left(1-u^{2} d^{2}\right)\left(1-u^{4} d^{2}\right)\left(1-u^{2} d^{4}\right)\left(1-u^{4} d^{4}\right)}, \\
H(q) & =h(q, q)=\frac{1+q^{12}}{\left(1-q^{2}\right)^{2}\left(1-q^{4}\right)^{3}\left(1-q^{6}\right)^{4}\left(1-q^{8}\right)}, \tag{5.20}
\end{align*}
$$

respectively. This case has $p=10$ parameters, consisting of 6 masses, three angles and one phase, which agrees with the number of denominator factors. The original variable space has $\operatorname{dim} V=36$, from the two $3 \times 3$ mass matrices and their complex conjugates. The degrees of the numerator and denominator are $d_{N}=12$ and $d_{D}=48$, respectively, and Knop's inequality is $36 \geq 48-12 \geq 10$, which is satisfied, with the upper bound being an equality. If one started with $X_{U}$ and $X_{D}$ as the basic objects, then $\operatorname{dim} V=18$, and the Hilbert series is given by replacing $q^{2} \rightarrow q$ in eq. (5.20), so $d_{N}=6, d_{D}=24$, and Knop's inequality becomes $18 \geq 24-6 \geq 10$.

The denominator of eq. (5.20) shows that there are two invariants of degree two, three of degree four, four of degree six, and one of degree eight, which can occur multiplied in arbitrary combinations, with no relations among them. One can see that their degrees match the denominator factors in eq. (5.20). What about the remaining two invariants? The numerator factor of eq. (5.20) shows that there is one additional invariant of degree twelve other than those given by products of denominator factors. This is the $C P$-odd invariant eq. (5.18). The Hilbert series implies that the other degree-twelve invariant, eq. (5.19), cannot be an independent invariant. Indeed, it can be written as a polynomial in the other $C P$-even invariants,

$$
\begin{align*}
3 I_{6,6}^{(+)}= & I_{2,0}^{3} I_{0,2}^{3}-I_{2,0} I_{4,0} I_{0,2}^{3}-3 I_{2,2} I_{2,0}^{2} I_{0,2}^{2}+3 I_{4,2} I_{2,0} I_{0,2}^{2}-I_{0,4} I_{2,0}^{3} I_{0,2}+3 I_{2,4} I_{2,0}^{2} I_{0,2} \\
& -3 I_{4,4} I_{2,0} I_{0,2}+I_{0,4} I_{6,0} I_{0,2}+3 I_{2,4} I_{4,2}+3 I_{2,2} I_{4,4}+I_{0,6} I_{2,0} I_{4,0}-I_{0,6} I_{6,0}, \tag{5.21}
\end{align*}
$$

and so can be eliminated.
The Hilbert series numerator only has an entry $q^{12}$, but there is no $q^{24}$ term. This means that $I_{6,6}^{(-)}$is an independent invariant, but the square and all higher powers of $I_{6,6}^{(-)}$ are not. The square of the $C P$-odd invariant $I_{6,6}^{(-)}$is $C P$-even, and can be written as a polynomial (with 241 terms out of a possible 305 terms) in the $C P$-even invariants of eq. (5.17). The most general polynomial invariant in the quark sector can be written as

$$
\begin{equation*}
P_{1}+I_{6,6}^{(-)} P_{2} \tag{5.22}
\end{equation*}
$$

where $P_{1}$ and $P_{2}$ are polynomials in the $C P$-even invariants eq. (5.17).
This example illustrates how the structure of the invariants is encoded in the Hilbert series. For many purposes, the details of the relations, such as eq. (5.21), or the formula
for $\left(I_{6,6}^{(-)}\right)^{2}$ are not important; all one needs to know is that $I_{6,6}^{(-)}$occurs linearly, and $I_{6,6}^{(+)}$ can be eliminated.

The quark sector parameters are determined by the ten $C P$-even parameters $I_{2,0}$, $I_{4,0}, I_{6,0}, I_{0,2}, I_{0,4}, I_{0,6}, I_{2,2}, I_{2,4}, I_{4,2}, I_{4,4}$, and the single $C P$-odd parameter $I_{6,6}^{(-)}$. From the $C P$-even invariants, one can determine the $U$-type quark masses $m_{u, c, t}$ and $D$-type quark masses $m_{d, s, b}$, which are real and non-negative, and four combinations of the CKM parameters, $\cos \theta_{12}, \cos \theta_{13}, \cos \theta_{23}$ and $\cos \delta$, all of which are $C P$ even. Since the CKM angles $\theta_{12}, \theta_{13}, \theta_{23}$ lie in the first quadrant, these angles are determined uniquely by their cosines. However, $\cos \delta$ does not determine the phase $\delta$ uniquely, because it cannot distinguish between $\delta$ and $-\delta$. Under $C P, \delta \leftrightarrow-\delta$. Thus, one $Z_{2}$ piece of information, the sign of $\delta$, is missing. This sign is provided by the invariant $I_{6,6}^{(-)}$. The only information needed is the sign of $I_{6,6}^{(-)}$, which is why $\left(I_{6,6}^{(-)}\right)^{2}$ can be written in terms of the other $C P$ even invariants. This discussion corresponds to the well-known result that the unitarity triangle can be obtained by measuring the lengths of its sides, which are $C P$-conserving, rather than the angles, which are $C P$-violating. Knowing the sides determines the triangle up to a two-fold reflection ambiguity, which is fixed by the sign of $I_{6,6}^{(-)}$, or, equivalently, the sign of the Jarlskog invariant, so that the only additional information contained in the Jarlskog invariant is the sign. The relations between the invariants are similar to those obtained by studying rephasing invariants [5].

The invariant $I_{6,6}^{(-)}$also can be written as

$$
\begin{equation*}
I_{6,6}^{(-)}=\frac{1}{3}\left\langle\left[X_{U}, X_{D}\right]^{3}\right\rangle, \tag{5.23}
\end{equation*}
$$

and is proportional to the Jarlskog invariant $J[2]$,

$$
\begin{equation*}
I_{6,6}^{(-)}=2 i J\left(m_{c}^{2}-m_{u}^{2}\right)\left(m_{t}^{2}-m_{c}^{2}\right)\left(m_{t}^{2}-m_{u}^{2}\right)\left(m_{s}^{2}-m_{d}^{2}\right)\left(m_{b}^{2}-m_{s}^{2}\right)\left(m_{b}^{2}-m_{d}^{2}\right), \tag{5.24}
\end{equation*}
$$

where

$$
\begin{equation*}
J=\operatorname{Im}\left(V_{\mathrm{CKM}}\right)_{11}\left(V_{\mathrm{CKM}}\right)_{12}^{*}\left(V_{\mathrm{CKM}}\right)_{22}\left(V_{\mathrm{CKM}}\right)_{21}^{*} . \tag{5.25}
\end{equation*}
$$

$I_{6,6}^{(-)}$vanishes if two $U$-type quarks or two $D$-type quarks are degenerate. It is well-known that quark $C P$ violation vanishes for degenerate $U$-type or $D$-type quarks. $I_{6,6}^{(-)}$is odd under the exchange of two $U$-type or two $D$-type masses, e.g under $m_{u} \leftrightarrow m_{c}$, whereas the invariants in eq. (5.17) are even under exchange, so $I_{6,6}^{(-)}$cannot be written in terms of the other invariants. $\left(I_{6,6}^{(-)}\right)^{2}$ is even under exchange, and can be written in terms of the other invariants.

It is, of course, well-known that $C P$ conservation in the quark sector requires $J=0$, or equivalently, $I_{6,6}^{(-)}=0$. What is new is the structure of the ring of all invariant polynomials, and the relation between the $C P$-conserving and $C P$-violating invariants.

The invariants which must vanish in the quark sector for $C P$ conservation was determined for an arbitrary number of generations in ref. [25].

## 6 Lepton invariants for two generations

The structure of the lepton invariants, like the quark invariants, depends on the number of generations, so we first consider the case of $n_{g}=2$ generations in this section. The case of $n_{g}=3$ generations is considered in section 7 . We will outline the derivation of the results, but not give all the details.

### 6.1 The standard model effective theory

We now study the lepton invariants in the Standard Model low-energy effective theory with a neutrino Majorana mass term. The structure of the lepton invariants is considerably more complicated than the quark invariants. The lepton sector of the low-energy theory contains the flavor symmetry breaking matrices $Y_{E}$ and $C_{5}$, so we are interested in polynomials in $m_{E}, m_{E}{ }^{\dagger}, m_{5}$ and $m_{5}{ }^{*}=m_{5}^{\dagger}$, since $m_{5}$ is a symmetric matrix. These matrices transform as

$$
\begin{align*}
m_{E} & \rightarrow \mathcal{U}_{E^{c}}{ }^{T} m_{E} \mathcal{U}_{L}, \\
m_{E}^{\dagger} & \rightarrow \mathcal{U}_{E^{c}}{ }^{\dagger} m_{E}^{\dagger} \mathcal{U}_{L}{ }^{*}, \\
m_{5} & \rightarrow \mathcal{U}_{L}^{T} m_{5} \mathcal{U}_{L}, \\
m_{5}^{*} & \rightarrow \mathcal{U}_{L}^{\dagger} m_{5}^{*} \mathcal{U}_{L}^{*}, \tag{6.1}
\end{align*}
$$

under chiral flavor transformations. To cancel $\mathcal{U}_{E^{c}}$, one must consider the combinations

$$
\begin{align*}
X_{E} & \equiv m_{E}^{\dagger} m_{E}, \\
X_{E}^{*}=X_{E}^{T} & \equiv m_{E}^{T} m_{E}^{*}, \tag{6.2}
\end{align*}
$$

which transform as

$$
\begin{align*}
X_{E} & \rightarrow \mathcal{U}_{L}^{\dagger} X_{E} \mathcal{U}_{L}, \\
X_{E}^{T} & \rightarrow \mathcal{U}_{L}^{T} X_{E}^{T} \mathcal{U}_{L}{ }^{*} . \tag{6.3}
\end{align*}
$$

It also is convenient to define

$$
\begin{equation*}
X_{5} \equiv m_{5}{ }^{*} m_{5}, \tag{6.4}
\end{equation*}
$$

which transforms as

$$
\begin{equation*}
X_{5} \rightarrow \mathcal{U}_{L}^{\dagger} X_{5} \mathcal{U}_{L}, \tag{6.5}
\end{equation*}
$$

as well as $\left(m_{5}^{*}\left(X_{E}\right)^{T} m_{5}\right)$, which transforms as

$$
\begin{equation*}
\left(m_{5}^{*}\left(X_{E}^{n}\right)^{T} m_{5}\right) \rightarrow \mathcal{U}_{L}^{\dagger}\left(m_{5}^{*}\left(X_{E}^{n}\right)^{T} m_{5}\right) \mathcal{U}_{L} . \tag{6.6}
\end{equation*}
$$

The invariants involving only $X_{E}$ are $I_{2,0}=\left\langle X_{E}\right\rangle$ and $I_{4,0}=\left\langle X_{E}{ }^{2}\right\rangle$, whereas the invariants involving only $m_{5}$ and $m_{5}{ }^{*}$ are $I_{0,2}=\left\langle X_{5}\right\rangle$ and $I_{0,4}=\left\langle X_{5}{ }^{2}\right\rangle$.

The invariants involving $X_{E}, m_{5}$ and $m_{5}{ }^{*}$ are of the form

$$
\begin{equation*}
\left\langle m_{5}^{*}\left(X_{E}^{r_{1}}\right)^{T} m_{5} X_{E}^{s_{1}} \ldots m_{5}^{*}\left(X_{E}^{r_{n}}\right)^{T} m_{5} X_{E}^{s_{n}}\right\rangle \tag{6.7}
\end{equation*}
$$

for integers $r_{i}$ and $s_{i}$. The Cayley-Hamilton theorem implies that all powers $r_{i}$ and $s_{i}$ greater than one in eq. (6.7) can be rewritten in terms of lower order invariants. Thus, one needs to consider traces of matrix products containing the matrices $X_{E}, X_{5}$, and $\left(m_{5}{ }^{*} X_{E}{ }^{T} m_{5}\right)$ at most once.

In summary, the generators of the invariants are:

$$
\begin{align*}
I_{2,0} & =\left\langle X_{E}\right\rangle=\left\langle m_{E}{ }^{\dagger} m_{E}\right\rangle, \\
I_{0,2} & =\left\langle X_{5}\right\rangle=\left\langle m_{5}{ }^{*} m_{5}\right\rangle, \\
I_{4,0} & =\left\langle X_{E}{ }^{2}\right\rangle=\left\langle\left(m_{E}^{\dagger} m_{E}\right)^{2}\right\rangle, \\
I_{2,2} & =\left\langle m_{5}{ }^{*} X_{E}^{T} m_{5}\right\rangle=\left\langle m_{5} X_{E} m_{5}{ }^{*}\right\rangle=\left\langle m_{E}{ }^{T} m_{E}{ }^{*} m_{5} m_{5}{ }^{*}\right\rangle=\left\langle m_{E}{ }^{\dagger} m_{E} m_{5}{ }^{*} m_{5}\right\rangle, \\
I_{0,4} & =\left\langle X_{5}{ }^{2}\right\rangle=\left\langle\left(m_{5}{ }^{*} m_{5}\right)^{2}\right\rangle, \\
I_{4,2} & =\left\langle m_{5}{ }^{*} X_{E}^{T} m_{5} X_{E}\right\rangle=\left\langle m_{5}{ }^{*} m_{E}{ }^{T} m_{E}{ }^{*} m_{5} m_{E}{ }^{\dagger} m_{E}\right\rangle,  \tag{6.8}\\
I_{4,4}^{(-)} & =\left\langle m_{5}{ }^{*} X_{E}^{T} m_{5} X_{E} m_{5}{ }^{*} m_{5}\right\rangle-\left\langle m_{5}{ }^{*} X_{E}^{T} m_{5} m_{5}{ }^{*} m_{5} X_{E}\right\rangle \\
& =\left\langle m_{5}{ }^{*} m_{E}^{T} m_{E}{ }^{*} m_{5} m_{E}^{\dagger} m_{E} m_{5}{ }^{*} m_{5}\right\rangle-\left\langle m_{5}{ }^{*} m_{E}{ }^{T} m_{E}^{*} m_{5} m_{5}{ }^{*} m_{5} m_{E}{ }^{\dagger} m_{E}\right\rangle,
\end{align*}
$$

where $I_{4,4}^{(-)}$is $C P$ odd, and the rest are $C P$ even. The square of the $C P$-odd invariant, $\left(I_{4,4}^{(-)}\right)^{2}$, is not independent; it can be expressed in terms of polynomials in the other $C P$-even invariants. In addition, the $C P$-even invariant $I_{4,4}^{(+)}$, obtained by the substitution $-\rightarrow+$ in $I_{4,4}^{(-)}$, is not independent, and thus is not included in the above list.

There are six parameters: four masses, one angle and one phase, see table 5 . The four masses, one mixing angle, and one phase, can be determined from $I_{2,0}, I_{4,0}, I_{0,2}, I_{0,4}, I_{2,2}$ and $I_{2,4}$ up to a sign ambiguity in the phase, just as for the case of three generations of quarks already discussed. The sign of the phase is fixed by the sign of $I_{4,4}^{(-)}$.

The multi-graded Hilbert series is

$$
\begin{equation*}
h(y, z)=\frac{1+y^{4} z^{4}}{\left(1-y^{2}\right)\left(1-y^{4}\right)\left(1-z^{2}\right)\left(1-z^{4}\right)\left(1-y^{2} z^{2}\right)\left(1-y^{4} z^{2}\right)}, \tag{6.9}
\end{equation*}
$$

where $y$ counts powers of $m_{E}$ and $z$ counts powers of $m_{5}$. The single variable Hilbert series is

$$
\begin{equation*}
H(q)=h(q, q)=\frac{1+q^{8}}{\left(1-q^{2}\right)^{2}\left(1-q^{4}\right)^{3}\left(1-q^{6}\right)} . \tag{6.10}
\end{equation*}
$$

The $q^{8}$ term in the numerator shows that there is one degree-eight invariant $I_{4,4}^{(-)}$which occurs, but that the square of this invariant is not independent and can be eliminated.

The number of denominator factors $p=6$ is equal to the number of parameters, and $d_{N}=8, d_{D}=22$. The number of variables is $\operatorname{dim} V=14$, since we have one $2 \times 2$ mass matrix, one $2 \times 2$ symmetric mass matrix, and their complex conjugates. Knop's inequality $14 \geq 22-8 \geq 6$ is satisfied, with an equality for the upper bound. The six parameters correspond to 2 charged lepton masses, 2 Majorana neutrino masses, one mixing angle and one phase.

The denominator of eq. (6.10) shows that there are two generators of degree two, three of degree four, and one of degree six, which agrees with the $C P$-even invariants in eq. (6.9). The numerator shows that there is an invariant of degree eight, whose square can be eliminated, which is $I_{4,4}^{(-)}$. The structure of the invariants for $n_{g}=2$ is similar to that for quarks for $n_{g}=3$.

Weak-basis invariants for two generations in the low-energy effective theory were studied previously by Branco, Lavoura and Rebelo [26]. They defined an invariant $Q$, related to $I_{4,4}^{(-)}$by

$$
\begin{equation*}
2 i \operatorname{Im} \operatorname{Tr} Q=I_{4,4}^{(-)} \tag{6.11}
\end{equation*}
$$

and showed that $Q=0$ is a necessary and sufficient condition for $C P$ conservation. This is consistent with our results, since the only $C P$-odd generating invariant is $I_{4,4}^{(-)}$.

### 6.2 The seesaw model

In this section, we analyze the lepton invariants in the seesaw theory for $n_{g}=n_{g}^{\prime}=2$ generations of fermions. There are three matrices in the lepton sector, $m_{\nu}, m_{E}$ and $M$, and their complex conjugates $m_{\nu}{ }^{\dagger}, m_{E}{ }^{\dagger}$ and $M^{\dagger}=M^{*} .{ }^{7}$ From eq. (2.3), we see that only $m_{E}$ transforms under $\mathcal{U}_{E^{c}}$, so it must always occur in the combination

$$
\begin{equation*}
X_{E}=m_{E}^{\dagger} m_{E} \tag{6.12}
\end{equation*}
$$

which transforms as

$$
\begin{equation*}
X_{E} \rightarrow \mathcal{U}_{L}^{\dagger} X_{E} \mathcal{U}_{L} \tag{6.13}
\end{equation*}
$$

under the chiral flavor symmetry transformations. The mass matrices $m_{\nu}, m_{\nu}^{\dagger}, M$ and $M^{*}$ transform as

$$
\begin{align*}
m_{\nu} & \rightarrow \mathcal{U}_{N^{c}}^{T} m_{\nu} \mathcal{U}_{L} \\
m_{\nu}^{\dagger} & \rightarrow \mathcal{U}_{L}^{\dagger} m_{\nu}^{\dagger} \mathcal{U}_{N^{c}}{ }^{*} \\
M & \rightarrow \mathcal{U}_{N^{c}}^{T} M \mathcal{U}_{N^{c}} \\
M^{*} & \rightarrow \mathcal{U}_{N^{c}}{ }^{\dagger} M^{*} \mathcal{U}_{N^{c}}{ }^{*} \tag{6.14}
\end{align*}
$$

It is useful to define

$$
\begin{align*}
X_{\nu} & \equiv m_{\nu}^{\dagger} m_{\nu} \\
Z_{\nu} & =m_{\nu} m_{\nu}^{\dagger} \\
Z_{\nu}^{T} & =Z_{\nu}^{*}=m_{\nu}^{*} m_{\nu}^{T} \tag{6.15}
\end{align*}
$$

which transform as

$$
\begin{align*}
X_{\nu} & \rightarrow \mathcal{U}_{L}^{\dagger} X_{\nu} \mathcal{U}_{L}, \\
Z_{\nu} & \rightarrow \mathcal{U}_{N^{c}}{ }^{T} Z_{\nu} \mathcal{U}_{N^{c^{*}}}, \\
Z_{\nu}{ }^{T} & \rightarrow \mathcal{U}_{N^{c}}{ }^{\dagger} Z_{\nu}{ }^{T} \mathcal{U}_{N^{c}}, \tag{6.16}
\end{align*}
$$

[^6]

Figure 1. Graphical representation of the chiral transformation properties of the lepton mass matrices $X_{E}, m_{\nu}, m_{\nu}^{\dagger}, M$ and $M^{*}$. A solid line represents $\mathcal{U}_{N^{c}}$, and a dashed line $\mathcal{U}_{L}$. The invariants are obtained by forming graphs with no external lines.
as well as

$$
\begin{align*}
X_{N} & \equiv M^{*} M, \\
Z_{N} & =M M^{*}, \\
Z_{X} & =m_{\nu} X_{E} m_{\nu}^{\dagger} \tag{6.17}
\end{align*}
$$

which transform as

$$
\begin{align*}
& X_{N} \rightarrow \mathcal{U}_{N^{c}}^{\dagger} X_{N} \mathcal{U}_{N^{c}}, \\
& Z_{N} \rightarrow \mathcal{U}_{N^{c}}{ }^{T} Z_{N} \mathcal{U}_{N^{c^{*}}}, \\
& Z_{X} \rightarrow \mathcal{U}_{N^{c}}{ }^{T} Z_{X} \mathcal{U}_{N^{c}} . \tag{6.18}
\end{align*}
$$

Note that $Z_{N}{ }^{T}=Z_{N}{ }^{*}=X_{N}$.
The invariants involve three mass matrices, $m_{E}, m_{\nu}$ and $M$. One first can consider the simpler problem of studying invariants which only depend on two out of the three matrices. The first case, invariants involving only $m_{E}$ and $m_{\nu}$, consists of invariants formed from traces of $X_{E}$ and $X_{\nu}$ only, with no insertions of $M$ or $M^{*}$. These invariants are the same as the invariants in the quark sector with the substitutions $X_{U} \rightarrow X_{\nu}$ and $X_{D} \rightarrow X_{E}$. The second case, invariants involving only $m_{\nu}$ and $M$, are invariants which do not contain $X_{E}$. These have the same structure as invariants constructed in the low-energy theory, with the replacements $m_{5} \rightarrow M, m_{E} \rightarrow m_{\nu}^{T}$, i.e. $X_{E} \rightarrow Z_{\nu}^{T}$.

The most general invariant involving all three matrices has the structure

$$
\begin{equation*}
\left\langle M^{*} A_{1} M A_{2}^{T} \ldots M^{*} A_{2 n-1} M A_{2 n}^{T}\right\rangle, \tag{6.19}
\end{equation*}
$$

where $A_{i}=\mathbb{1}$ or $A_{i}=m_{\nu} \mathcal{P}\left(X_{E}, X_{\nu}\right) m_{\nu}{ }^{\dagger}$, where $\mathcal{P}$ is a polynomial in $X_{E}$ and $X_{\nu}$. This result can be obtained by representing the chiral transformations of the matrices graphically, as shown in figure 1. Products of matrices such as eq. (6.19) also occurred when studying rephasing invariants [5]. For rephasing invariants, one can factor long products into smaller ones, each involving at most four mixing matrices, using reconnection identities. This factorization is no longer possible for the case of mass-matrix invariants, which leads to an interesting and highly non-trivial structure for the invariants.

The basic invariants can be constructed using eq. (6.19) and eliminating higher powers of matrices by the Cayley-Hamilton identity eq. (5.5). The generators are:

$$
\begin{align*}
I_{2,0,0} & =\left\langle X_{E}\right\rangle=\left\langle m_{E}^{\dagger} m_{E}\right\rangle,  \tag{6.20}\\
I_{0,2,0} & =\left\langle X_{\nu}\right\rangle=\left\langle m_{\nu}^{\dagger} m_{\nu}\right\rangle,
\end{align*}
$$

$$
\begin{align*}
& I_{0,0,2}=\left\langle X_{N}\right\rangle=\left\langle M^{*} M\right\rangle,  \tag{6.21}\\
& I_{4,0,0}=\left\langle X_{E}{ }^{2}\right\rangle=\left\langle m_{E}{ }^{\dagger} m_{E} m_{E}^{\dagger} m_{E}\right\rangle, \\
& I_{2,2,0}=\left\langle X_{\nu} X_{E}\right\rangle=\left\langle m_{\nu}^{\dagger} m_{\nu} m_{E}^{\dagger} m_{E}\right\rangle, \\
& I_{0,4,0}=\left\langle X_{\nu}{ }^{2}\right\rangle=\left\langle m_{\nu}{ }^{\dagger} m_{\nu} m_{\nu}{ }^{\dagger} m_{\nu}\right\rangle, \\
& I_{0,2,2}=\left\langle Z_{\nu} Z_{N}\right\rangle=\left\langle m_{\nu} m_{\nu}^{\dagger} M M^{*}\right\rangle, \\
& I_{0,0,4}=\left\langle X_{N}{ }^{2}\right\rangle=\left\langle M^{*} M M^{*} M\right\rangle, \\
& I_{2,2,2}=\left\langle Z_{X} Z_{N}\right\rangle=\left\langle m_{\nu} m_{E}^{\dagger} m_{E} m_{\nu}^{\dagger} M M^{*}\right\rangle, \\
& I_{0,4,2}=\left\langle M^{*} Z_{\nu} M Z_{\nu}{ }^{T}\right\rangle=\left\langle M^{*} m_{\nu} m_{\nu}{ }^{\dagger} M m_{\nu}{ }^{*} m_{\nu}{ }^{T}\right\rangle \text {, } \\
& I_{2,4,2}=\left\langle M^{*} Z_{\nu} M Z_{X}{ }^{T}\right\rangle=\left\langle M^{*} m_{\nu} m_{\nu}{ }^{\dagger} M m_{\nu}{ }^{*} m_{E}{ }^{T} m_{E}{ }^{*} m_{\nu}{ }^{T}\right\rangle, \\
& I_{2,4,2}^{(-)}=\left\langle M^{*} Z_{\nu} Z_{X} M\right\rangle-\left\langle M^{*} Z_{X} Z_{\nu} M\right\rangle \\
& =\left\langle M^{*} m_{\nu} m_{\nu}^{\dagger} m_{\nu} m_{E}^{\dagger} m_{E} m_{\nu}^{\dagger} M\right\rangle-\left\langle M^{*} m_{\nu} m_{E}^{\dagger} m_{E} m_{\nu}^{\dagger} m_{\nu} m_{\nu}^{\dagger} M\right\rangle, \\
& I_{0,4,4}^{(-)}=\left\langle Z_{N} Z_{\nu} M Z_{\nu}^{T} M^{*}\right\rangle-\left\langle M^{*} Z_{\nu} Z_{N} M Z_{\nu}^{T}\right\rangle \\
& =\left\langle M M^{*} m_{\nu} m_{\nu}{ }^{\dagger} M m_{\nu}{ }^{*} m_{\nu}{ }^{T} M^{*}\right\rangle-\left\langle M^{*} m_{\nu} m_{\nu}{ }^{\dagger} M M^{*} M m_{\nu}{ }^{*} m_{\nu}{ }^{T}\right\rangle, \\
& I_{4,4,2}=\left\langle M^{*} Z_{X} M Z_{X}{ }^{T}\right\rangle \\
& =\left\langle M^{*} m_{\nu} m_{E}{ }^{\dagger} m_{E} m_{\nu}{ }^{\dagger} M m_{\nu}{ }^{*} m_{E}{ }^{T} m_{E}{ }^{*} m_{\nu}{ }^{T}\right\rangle, \\
& I_{2,4,4}^{(-)}=\left\langle Z_{N} Z_{X} M Z_{\nu}^{T} M^{*}\right\rangle-\left\langle M^{*} Z_{X} Z_{N} M Z_{\nu}^{T}\right\rangle \\
& =\left\langle M M^{*} m_{\nu} m_{E}^{\dagger} m_{E} m_{\nu}^{\dagger} M m_{\nu}{ }^{*} m_{\nu}{ }^{T} M^{*}\right\rangle-\left\langle M^{*} m_{\nu} m_{E}{ }^{\dagger} m_{E} m_{\nu}^{\dagger} M M^{\dagger} M m_{\nu}{ }^{*} m_{\nu}{ }^{T}\right\rangle, \\
& I_{2,6,2}^{(-)}=\left\langle M^{*} Z_{\nu} Z_{X} M Z_{\nu}^{T}\right\rangle-\left\langle M^{*} Z_{X} Z_{\nu} M Z_{\nu}{ }^{T}\right\rangle \\
& =\left\langle M^{*} m_{\nu} m_{\nu}{ }^{\dagger} m_{\nu} m_{E}^{\dagger} m_{E} m_{\nu}^{\dagger} M m_{\nu}{ }^{*} m_{\nu}{ }^{T}\right\rangle-\left\langle M^{*} m_{\nu} m_{E}{ }^{\dagger} m_{E} m_{\nu}{ }^{\dagger} m_{\nu} m_{\nu}{ }^{\dagger} M m_{\nu}{ }^{*} m_{\nu}{ }^{T}\right\rangle, \\
& I_{4,4,4}^{(-)}=\left\langle M^{*} Z_{N} Z_{X} M Z_{X}^{T}\right\rangle-\left\langle M^{*} Z_{X}^{T} Z_{N} M Z_{X}\right\rangle, \\
& I_{4,6,2}^{(-)}=\left\langle M^{*} Z_{\nu} Z_{X} M Z_{X}^{T}\right\rangle-\left\langle M^{*} Z_{X} Z_{\nu} M Z_{X}^{T}\right\rangle .
\end{align*}
$$ nomials in lower order invariants and which have not been listed above. These invariants include $I_{2,4,2}^{(+)}, I_{0,4,4}^{(+)}, I_{2,4,4}^{(+)}, I_{2,6,2}^{(+)}, I_{4,4,4}^{(+)}$and $I_{4,6,2}^{(+)}$, which are related in an obvious way to the invariants in eq. (6.22) with superscripts (-). The degree-eight invariants $I_{2,4,2}^{(+)}$and $I_{0,4,4}^{(+)}$ are eliminated by the identities

$$
\begin{align*}
& 0=I_{0,0,2} I_{0,2,0}^{2} I_{2,0,0}-I_{0,0,2} I_{0,4,0} I_{2,0,0}-2 I_{0,2,0} I_{2,2,2}-2 I_{0,2,2} I_{2,2,0}+2 I_{2,4,2}^{(+)} \\
& 0=I_{0,0,2}^{2} I_{0,2,0}^{2}-2 I_{0,0,2} I_{0,4,2}-I_{0,0,4} I_{0,2,0}^{2}-2 I_{0,2,2}^{2}+2 I_{0,4,4}^{(+)} \tag{6.23}
\end{align*}
$$

and the degree-ten invariants $I_{2,4,4}^{(+)}$and $I_{2,6,2}^{(+)}$are eliminated by the identities

$$
\begin{align*}
& 0=I_{0,0,2}^{2} I_{0,2,0} I_{2,2,0}-2 I_{0,0,2} I_{2,4,2}-I_{0,0,4} I_{0,2,0} I_{2,2,0}-2 I_{0,2,2} I_{2,2,2}+2 I_{2,4,4}^{(+)} \\
& 0=I_{0,2,0}^{2} I_{0,2,2} I_{2,0,0}-2 I_{0,2,0} I_{2,4,2}-I_{0,2,2} I_{0,4,0} I_{2,0,0}-2 I_{0,4,2} I_{2,2,0}+2 I_{2,6,2}^{(+)} \tag{6.24}
\end{align*}
$$

The degree-twelve invariants $I_{4,4,4}^{(+)}$and $I_{4,6,2}^{(+)}$are also polynomials in lower order invariants, but we do not include the explicit identities here.

In eq. (6.22), there are three $C P$-even invariants of degree two, five of degree four, two of degree six, one of degree eight, and one of degree ten, for a grand total of 12 basic
$C P$-even invariants. In addition, there are two $C P$-odd invariants of degree eight, two of degree ten and two of degree twelve, for a total of 6 basic $C P$-odd invariants. All of the invariants can be written as polynomials in these 18 basic invariants.

The multi-graded Hilbert series is

$$
\begin{align*}
h(x, y, z)= & \frac{N}{D}  \tag{6.25}\\
N= & 1+2 x^{2} y^{4} z^{2}+y^{4} z^{4}+x^{2} y^{4} z^{4}+x^{2} y^{6} z^{2}+x^{4} y^{4} z^{4}+x^{4} y^{6} z^{2}-x^{2} y^{6} z^{6}-x^{2} y^{8} z^{4} \\
& -x^{4} y^{6} z^{6}-x^{4} y^{8} z^{4}-x^{6} y^{8} z^{4}-2 x^{4} y^{8} z^{6}-x^{6} y^{12} z^{8} \\
D= & \left(1-x^{2}\right)\left(1-x^{4}\right)\left(1-y^{2}\right)\left(1-y^{4}\right)\left(1-z^{2}\right)\left(1-z^{4}\right)\left(1-x^{2} y^{2}\right)\left(1-y^{2} z^{2}\right) \\
& \times\left(1-x^{2} y^{2} z^{2}\right)\left(1-y^{4} z^{2}\right)\left(1-x^{4} y^{4} z^{2}\right)
\end{align*}
$$

where $x, y, z$ count powers of $m_{E}, m_{\nu}$ and $M$, respectively. The Hilbert series $H(q)=$ $h(q, q, q)$ is

$$
\begin{equation*}
H(q)=\frac{1+q^{6}+3 q^{8}+2 q^{10}+3 q^{12}+q^{14}+q^{20}}{\left(1-q^{2}\right)^{3}\left(1-q^{4}\right)^{5}\left(1-q^{6}\right)\left(1-q^{10}\right)} \tag{6.26}
\end{equation*}
$$

which has a palindromic numerator. The number of denominator factors $p=10$ is equal to the number of parameters, and $d_{N}=20$ and $d_{D}=42$. The number of variables is $\operatorname{dim} V=$ 22 , because we have two $2 \times 2$ matrices with 4 independent entries, one $2 \times 2$ symmetric matrix with 3 independent entries, and their complex conjugates. Knop's inequality is $22 \geq 42-20 \geq 10$, and the upper bound is an equality. The 10 parameters in the lepton sector of the seesaw model for $n_{g}=n_{g}^{\prime}=2$ generations correspond to 2 charged lepton masses, 4 Majorana neutrino masses of the two light and the two heavy neutrinos, 2 angles and 2 phases.

One can see from the Hilbert series that the structure of invariants is far more complicated than in the quark case. The denominator factors $\left(1-q^{2}\right)^{3}\left(1-q^{4}\right)^{5}$ of eq. (6.26) corresponds to the generators $I_{2,0,0}, I_{0,2,0}, I_{0,0,2}, I_{4,0,0}, I_{2,2,0}, I_{0,4,0}, I_{0,2,2}, I_{0,0,4}$. At degree six, in addition to products of lower order invariants, there are two new invariants, $I_{2,2,2}$ and $I_{0,4,2}$. These two invariants correspond to the $\left(1-q^{6}\right)$ factor in the denominator, and the $+q^{6}$ term in the numerator. Since there is only one power of $\left(1-q^{6}\right)$ factor in the denominator, we know that there will be non-trivial relations involving the degree-six invariants. At degree eight, there are 3 new invariants from the $+3 q^{8}$ term in the numerator in addition to products of lower degree invariants which make up the denominator. These are the three degree-eight invariants in eq. (6.22). There are three new invariants of degree twelve (from the $+3 q^{12}$ ), but only two degree-twelve invariants in eq. (6.22). The third degree-twelve invariant is the square of the degree-six invariant corresponding to the $+q^{6}$ term in the numerator, so the square of this $C P$-even invariant cannot be removed. We have noted earlier that there must be non-trivial relations involving the degree-six
invariants. These relations first occur at degree 14,

$$
\begin{align*}
0= & I_{0,0,2} I_{0,2,0} I_{2,6,2}^{(-)}+I_{0,2,0}^{2} I_{0,4,4}^{(-)} I_{2,0,0}-I_{0,2,0}^{2} I_{2,4,4}^{(-)} \\
& -I_{0,2,0} I_{0,2,2} I_{2,4,2}^{(-)}-I_{0,2,0} I_{0,4,4}^{(-)} I_{2,2,0}-2 I_{0,2,2} I_{2,6,2}^{(-)} \\
& -I_{0,4,0} I_{0,4,4}^{(-)} I_{2,0,0}+2 I_{0,4,0} I_{2,4,4}^{(-)}+2 I_{0,4,2} I_{2,4,2}^{(-)} \\
0= & I_{0,0,2}^{2} I_{0,2,0}^{(-)} I_{2,4,2}^{(-)} I_{0,0,2}^{2} I_{2,6,2}^{(-)}+I_{0,0,2} I_{0,2,0} I_{2,4,4}^{(-)} \\
& -I_{0,0,2} I_{0,2,2} I_{2,4,2}^{(-)}-I_{0,0,2} I_{2,2,0} I_{0,4,4}^{(-)}-I_{0,0,4} I_{0,2,0} I_{2,4,2}^{(-)} \\
& +2 I_{0,0,4}^{(-)} I_{2,6,2}^{(-)}-2 I_{0,2,2} I_{2,4,4}^{(-)}+2 I_{2,2,2} I_{0,4,4}^{(-)}, \tag{6.27}
\end{align*}
$$

and are non-linear relations involving the two degree-six invariants. One can proceed to higher degrees - there are six relations of degree 16 , etc., and verify the number of independent invariants at each degree agrees with eq. (6.26). The details of the relations are not important. The main purpose of giving eq. (6.27) is to show that there can be non-linear relations among the generating invariants. To completely unravel all of the nonlinear relations requires going beyond degree 20 , the highest power of $q$ in the numerator of eq. (6.26).

## 7 Lepton invariants for three generations

In this section, we consider the lepton invariants in the low-energy and high-energy theories for three generations of fermions. The number of invariants is far greater than for two generations, and there are many relations between them. For the low-energy theory, we give the Hilbert series, and the invariants which correspond to the denominator factors. For three generations, even the Hilbert series proved too difficult to compute. For this case, we make some general remarks, and discuss some invariants considered previously by Branco et al. [26, 27], and by Davidson and Kitano [15].

### 7.1 The standard model effective theory

The invariants involving only $X_{E}$ are $I_{2,0}=\left\langle X_{E}\right\rangle, I_{4,0}=\left\langle X_{E}{ }^{2}\right\rangle$ and $I_{6,0}=\left\langle X_{E}{ }^{3}\right\rangle$, whereas the invariants involving only $m_{5}$ and $m_{5}{ }^{*}$ are $I_{0,2}=\left\langle X_{5}\right\rangle, I_{0,4}=\left\langle X_{5}{ }^{2}\right\rangle$ and $I_{0,6}=\left\langle X_{5}{ }^{3}\right\rangle$.

The invariants involving $X_{E}, m_{5}$ and $m_{5}{ }^{*}$ are of the form

$$
\begin{equation*}
\left\langle m_{5}^{*}\left(X_{E}^{r_{1}}\right)^{T} m_{5} X_{E}^{s_{1}} \ldots m_{5}^{*}\left(X_{E}^{r_{n}}\right)^{T} m_{5} X_{E}^{s_{n}}\right\rangle \tag{7.1}
\end{equation*}
$$

for integers $r_{i}$ and $s_{i}$. The Cayley-Hamilton theorem implies that all powers $r_{i}$ and $s_{i}$ greater than two in eq. (7.1) can be rewritten in terms of lower order invariants. Thus, one needs to consider traces of matrix products containing the matrices $X_{E}, X_{5}$, $\left(m_{5}{ }^{*} X_{E}^{T} m_{5}\right)$, and $\left(m_{5}^{*}\left(X_{E}^{2}\right)^{T} m_{5}\right)$ at most twice. Identity eq. (5.16) cannot be used to eliminate traces with multiple powers of $m_{5}$, because $\left\langle m_{5} A m_{5} B\right\rangle$ gets converted to traces of the form $\left\langle m_{5}^{2} A B\right\rangle$ which are no longer invariant. There are many basic invariants, which involve a single trace, up to degree $m_{5}^{10} m_{E}^{12}$, and we do not list them all here. The ones up
to degree twelve, which are sufficient for the denominator of the Hilbert series (and hence to determine the parameters) are:

$$
\begin{align*}
& I_{2,0}=\left\langle X_{E}\right\rangle=\left\langle m_{E}{ }^{\dagger} m_{E}\right\rangle, \\
& I_{0,2}=\left\langle X_{5}\right\rangle=\left\langle m_{5}{ }^{*} m_{5}\right\rangle \text {, } \\
& I_{4,0}=\left\langle X_{E}^{2}\right\rangle=\left\langle\left(m_{E}^{\dagger} m_{E}\right)^{2}\right\rangle, \\
& I_{2,2}=\left\langle X_{E} X_{5}\right\rangle=\left\langle m_{E}{ }^{\dagger} m_{E} m_{5}{ }^{*} m_{5}\right\rangle, \\
& I_{0,4}=\left\langle X_{5}{ }^{2}\right\rangle=\left\langle\left(m_{5}{ }^{*} m_{5}\right)^{2}\right\rangle \text {, } \\
& I_{6,0}=\left\langle X_{E}{ }^{3}\right\rangle=\left\langle\left(m_{E}{ }^{\dagger} m_{E}\right)^{3}\right\rangle, \\
& I_{4,2}^{\prime}=\left\langle X_{E}{ }^{2} X_{5}\right\rangle=\left\langle\left(m_{E}{ }^{\dagger} m_{E}\right)^{2} m_{5}{ }^{*} m_{5}\right\rangle, \\
& I_{4,2}=\left\langle m_{5}{ }^{*} X_{E}{ }^{T} m_{5} X_{E}\right\rangle=\left\langle m_{5}{ }^{*} m_{E}{ }^{T} m_{E}{ }^{*} m_{5} m_{E}{ }^{\dagger} m_{E}\right\rangle, \\
& I_{2,4}=\left\langle X_{E} X_{5}{ }^{2}\right\rangle=\left\langle m_{E}{ }^{\dagger} m_{E}\left(m_{5}{ }^{*} m_{5}\right)^{2}\right\rangle, \\
& I_{0,6}=\left\langle X_{5}{ }^{3}\right\rangle=\left\langle\left(m_{5}{ }^{*} m_{5}\right)^{3}\right\rangle \text {, } \\
& I_{6,2}=\left\langle m_{5}{ }^{*} X_{E}{ }^{T} m_{5} X_{E}{ }^{2}\right\rangle=\left\langle m_{5}{ }^{*} m_{E}{ }^{T} m_{E}{ }^{*} m_{5}\left(m_{E}{ }^{\dagger} m_{E}\right)^{2}\right\rangle, \\
& I_{4,4}^{( \pm)}=\left\langle m_{5}{ }^{*} X_{E}{ }^{T} m_{5} m_{5}{ }^{*} m_{5} X_{E}\right\rangle \pm\left\langle m_{5}{ }^{*} m_{5} m_{5}{ }^{*} X_{E}{ }^{T} m_{5} X_{E}\right\rangle \\
& =\left\langle m_{5}{ }^{*} m_{E}{ }^{T} m_{E}{ }^{*} m_{5} m_{5}{ }^{*} m_{5} m_{E}{ }^{\dagger} m_{E}\right\rangle \pm\left\langle m_{5}{ }^{*} m_{5} m_{5}{ }^{*} m_{E}{ }^{T} m_{E}{ }^{*} m_{5} m_{E}{ }^{\dagger} m_{E}\right\rangle, \\
& I_{8,2}=\left\langle m_{5}^{*}\left(X_{E}^{T}\right)^{2} m_{5} X_{E}{ }^{2}\right\rangle=\left\langle m_{5}^{*}\left(m_{E}{ }^{T} m_{E}^{*}\right)^{2} m_{5}\left(m_{E}{ }^{\dagger} m_{E}\right)^{2}\right\rangle, \\
& I_{6,4}^{( \pm)}=\left\langle m_{5}{ }^{*} X_{E}{ }^{T} m_{5} m_{5}{ }^{*} m_{5} X_{E}{ }^{2}\right\rangle \pm\left\langle m_{5}{ }^{*} m_{5} m_{5}{ }^{*} X_{E}{ }^{T} m_{5} X_{E}{ }^{2}\right\rangle \\
& =\left\langle m_{5}{ }^{*} m_{E}{ }^{T} m_{E}{ }^{*} m_{5} m_{5}{ }^{*} m_{5}\left(m_{E}{ }^{\dagger} m_{E}\right)^{2}\right\rangle \pm\left\langle m_{5}{ }^{*} m_{5} m_{5}{ }^{*} m_{E}{ }^{T} m_{E}{ }^{*} m_{5}\left(m_{E}{ }^{\dagger} m_{E}\right)^{2}\right\rangle, \\
& I_{8,4}^{( \pm)}=\left\langle m_{5}{ }^{*}\left(X_{E}^{T}\right)^{2} m_{5} m_{5}{ }^{*} m_{5} X_{E}{ }^{2}\right\rangle \pm\left\langle m_{5}{ }^{*} m_{5} m_{5}{ }^{*}\left(X_{E}{ }^{T}\right)^{2} m_{5} X_{E}{ }^{2}\right\rangle \\
& =\left\langle m_{5}{ }^{*}\left(m_{E}{ }^{T} m_{E}{ }^{*}\right)^{2} m_{5} m_{5}{ }^{*} m_{5}\left(m_{E}{ }^{\dagger} m_{E}\right)^{2}\right\rangle \\
& \pm\left\langle m_{5}{ }^{*} m_{5} m_{5}{ }^{*}\left(m_{E}{ }^{T} m_{E}{ }^{*}\right)^{2} m_{5}\left(m_{E}{ }^{\dagger} m_{E}\right)^{2}\right\rangle \text {. } \tag{7.2}
\end{align*}
$$

The multi-graded Hilbert series is

$$
\begin{align*}
h(y, z)= & \frac{N}{D}, \\
N= & -y^{24} z^{18}-2 y^{20} z^{14}-2 y^{20} z^{12}-y^{20} z^{10}-2 y^{18} z^{14}-3 y^{18} z^{12}-y^{18} z^{10}-3 y^{16} z^{14} \\
& -3 y^{16} z^{12}-3 y^{16} z^{10}-y^{16} z^{8}-y^{16} z^{6}-y^{14} z^{14}-y^{14} z^{12}-y^{14} z^{10}-2 y^{14} z^{8} \\
& -y^{14} z^{6}-y^{12} z^{14}+y^{12} z^{4}+y^{10} z^{12}+2 y^{10} z^{10}+y^{10} z^{8}+y^{10} z^{6}+y^{10} z^{4}+y^{8} z^{12} \\
& +y^{8} z^{10}+3 y^{8} z^{8}+3 y^{8} z^{6}+3 y^{8} z^{4}+y^{6} z^{8}+3 y^{6} z^{6}+2 y^{6} z^{4}+y^{4} z^{8}+2 y^{4} z^{6} \\
& +2 y^{4} z^{4}+1, \\
D= & \left(1-y^{2}\right)\left(1-y^{4}\right)\left(1-y^{6}\right)\left(1-z^{2}\right)\left(1-z^{4}\right)\left(1-z^{6}\right)\left(1-y^{2} z^{2}\right)\left(1-y^{4} z^{2}\right)^{2} \\
& \times\left(1-y^{2} z^{4}\right)\left(1-y^{6} z^{2}\right)\left(1-y^{4} z^{4}\right)\left(1-y^{8} z^{2}\right), \tag{7.3}
\end{align*}
$$

where $y$ counts powers of $m_{E}$ and $z$ counts powers of $m_{5}$. The single-variable series $H(q)=$ $h(q, q)$ is

$$
\begin{align*}
& H(q)=  \tag{7.4}\\
& \frac{1+q^{6}+2 q^{8}+4 q^{10}+8 q^{12}+7 q^{14}+9 q^{16}+10 q^{18}+9 q^{20}+7 q^{22}+8 q^{24}+4 q^{26}+2 q^{28}+q^{30}+q^{36}}{\left(1-q^{2}\right)^{2}\left(1-q^{4}\right)^{3}\left(1-q^{6}\right)^{4}\left(1-q^{8}\right)^{2}\left(1-q^{10}\right)}
\end{align*}
$$

The number of denominator factors $p=12$ is equal to the number of parameters, and $d_{N}=36$ and $d_{D}=66$. The number of variables is $\operatorname{dim} V=30$, because we have one $3 \times 3$ matrix with 9 independent entries, one $3 \times 3$ symmetric matrix with 6 independent entries, and their complex conjugates. Knop's inequality is $30 \geq 66-36 \geq 12$, and the upper bound is an equality. Note that the numerator is palindromic. The 12 parameters consist of 3 charged lepton masses, 3 Majorana light neutrino masses, 3 angles and 3 phases.

The Hilbert series eq. (7.4) has a complicated numerator, which shows that the structure of the invariant ring is highly non-trivial. From the denominator of eq. (7.4), we see that there are two generators of degree two, three of degree four, four of degree six, two of degree eight, and one of degree 10 , which can be multiplied freely, with no relations. These account for most of the invariants in eq. (7.2), but there remains one $C P$-even invariant each of degrees $6,10,12$, and one $C P$-odd invariant each of degrees $8,10,12$. These contribute $q^{6}+q^{8}+2 q^{10}+2 q^{12}$ to the numerator in eq. (7.4). The coefficient of $q^{8}$ in the numerator of eq. (7.4) is 2 . Where does the other degree-eight invariant not in eq. (7.2) come from? The degree-six invariant that corresponds to the numerator factor $q^{6}$ can be multiplied by either of the two degree invariants, $I_{2,0}$ or $I_{0,2}$, to give two additional degree- 8 invariants. One of these can be written as a polynomial in lower order invariants; the other survives. One can continue this analysis to arbitrarily high order - the entire invariant structure is encoded in a very compact way in the Hilbert series eq. (7.4). An explicit example of the construction just discussed is given in section 6.2 for the high-energy theory with $n_{g}=2$, which provides a simpler example of an invariant ring with non-trivial relations.

For three generations, Branco, Lavoura and Rebelo [26] defined four invariants:

$$
\begin{align*}
& 2 i I_{1}=I_{4,4}^{(-)} \\
& 2 i I_{2}=\left\langle X_{E} m_{5}^{*} m_{5} m_{5}^{*} m_{5} m_{5}^{*} X_{E}^{T} m_{5}\right\rangle-\text { c.c. } \\
& 2 i I_{3}=\left\langle X_{E} m_{5}^{*} m_{5} m_{5}^{*} m_{5} m_{5}^{*} X_{E}^{T} m_{5} m_{5}^{*} m_{5}\right\rangle-\text { c.c. } \\
& 2 i I_{4}=\operatorname{det}\left[m_{5} X_{E} m_{5}^{*}+m_{5}^{*} X_{E}^{T} m_{5}\right]-\text { c.c. } \tag{7.5}
\end{align*}
$$

of degrees $(4,4),(4,6),(4,8)$ and $(6,6)$, and showed that the vanishing of these invariants implies $C P$ conservation. The $C P$-violating invariants of eq. (7.2) correspond to the denominator factors of the Hilbert series. There are additional $C P$-violating invariants not listed which correspond to terms in the numerator.

### 7.2 The seesaw model

The invariants involve three mass matrices, $m_{E}, m_{\nu}$ and $M$. One first can consider the simpler problem of studying invariants which only depend on two out of the three matrices. The first case, invariants involving only $m_{E}$ and $m_{\nu}$, consists of invariants formed from traces of $X_{E}$ and $X_{\nu}$ only, with no insertions of $M$ or $M^{*}$. These invariants are in direct
analogy to the invariants of the quark sector with the substitutions $X_{U} \rightarrow X_{\nu}$ and $X_{D} \rightarrow$ $X_{E}$. The second case, invariants involving only $m_{\nu}$ and $M$, are invariants which do not contain $X_{E}$. These have the same structure as invariants constructed in the low-energy theory, with the replacements $m_{5} \rightarrow M, m_{E} \rightarrow m_{\nu}^{T}$, i.e. $X_{E} \rightarrow Z_{\nu}^{T}$.

The most general invariant involving all three matrices has the structure

$$
\begin{equation*}
\left\langle M^{*} A_{1} M A_{2}^{T} \ldots M^{*} A_{2 n-1} M A_{2 n}^{T}\right\rangle \tag{7.6}
\end{equation*}
$$

where $A_{i}=\mathbb{1}$ or $A_{i}=m_{\nu} \mathcal{P}\left(X_{E}, X_{\nu}\right) m_{\nu}{ }^{\dagger}$, where $\mathcal{P}$ is a polynomial in $X_{E}$ and $X_{\nu}$. The generating invariants are given by using eq. (7.6). In this case, there are a very large number of generating invariants. They include all those discussed earlier in the seesaw theory for two generations, as well as many other.

For $n_{g}=n_{g}^{\prime}=3$ generations, there are 21 parameters which consist of 9 masses, 6 angles and 6 phases. The 9 masses are the 3 charged lepton masses, 3 light Majorana neutrino masses and 3 heavy Majorana neutrino masses. There are 3 angles in the mixing matrix $V$ and 3 angles in the mixing matrix $W$. There is one $\delta$-type phase in $V$ and in $W$, two Majorana phases $\Psi^{\prime}$ in $W$, and 2 phases $\bar{\Phi}$ which are not removeable when $V$ and $W$ are considered together.

We have been unable to construct the multi-graded and one-variable Hilbert series in this case. However, it is clear that the structure of the invariant relations is extremely complicated. There are a number of constraints on the form of the one-variable Hilbert series. The denominator must be a product of $p=21$ factors. The numerator must be palindromic, and $d_{N}$ and $d_{D}$ must satisfy the Knop inequality $48 \geq d_{D}-d_{N} \geq 21$ since $\operatorname{dim} V=48$. The number of variables $\operatorname{dim} V=48$ results because there are two $3 \times 3$ matrices $m_{E}$ and $m_{\nu}$ with 9 independent entries each, one $3 \times 3$ symmetric matrix $M$ with 6 independent entries, and the complex conjugates of the three matrices.

Ref. [27] defined six invariants in the seesaw theory,

$$
\begin{align*}
& 2 i I_{1}=\left\langle Y_{\nu} Y_{\nu}^{\dagger} M^{*} M M^{*}\left(Y_{\nu} Y_{\nu}^{\dagger}\right)^{T} M\right\rangle-\text { c.c. } \\
& 2 i I_{2}=\left\langle Y_{\nu} Y_{\nu}^{\dagger} M^{*} M M^{*} M M^{*}\left(Y_{\nu} Y_{\nu}^{\dagger}\right)^{T} M\right\rangle-\text { c.c. } \\
& 2 i I_{3}=\left\langle Y_{\nu} Y_{\nu}^{\dagger} M^{*} M M^{*} M M^{*}\left(Y_{\nu} Y_{\nu}^{\dagger}\right)^{T} M M^{*} M\right\rangle-\text { c.c. } \tag{7.7}
\end{align*}
$$

which involve $C P$-violating phases which are relevant for leptogenesis, as well as

$$
\begin{align*}
& 2 i \tilde{I}_{1}=\left\langle Y_{\nu} X_{E} Y_{\nu}^{\dagger} M^{*} M M^{*}\left(Y_{\nu} X_{E} Y_{\nu}^{\dagger}\right)^{T} M\right\rangle-\text { c.c. } \\
& 2 i \tilde{I}_{2}=\left\langle Y_{\nu} X_{E} Y_{\nu}^{\dagger} M^{*} M M^{*} M M^{*}\left(Y_{\nu} X_{E} Y_{\nu}^{\dagger}\right)^{T} M\right\rangle-\text { c.c. } \\
& 2 i \tilde{I}_{3}=\left\langle Y_{\nu} X_{E} Y_{\nu}^{\dagger} M^{*} M M^{*} M M^{*}\left(Y_{\nu} X_{E} Y_{\nu}^{\dagger}\right)^{T} M M^{*} M\right\rangle-\text { c.c. } \tag{7.8}
\end{align*}
$$

which involve the other phases.
Ref. [15] defines an invariant

$$
\begin{equation*}
2 i I_{1}=\left\langle\kappa^{\dagger} \kappa \kappa^{\dagger}\left(Y_{\nu}^{T} Y_{\nu}^{*}\right)^{-1} \kappa\left(Y_{\nu}^{\dagger} Y_{\nu}\right)^{-1}\right\rangle \tag{7.9}
\end{equation*}
$$

for leptogenesis, where $\kappa$ is $m_{5}$ with factors of the Higgs vacuum expectation value removed. This is not a polynomial in the basic variables of the seesaw model. It can be related to the invariants considered here using the formulæ given below.

Invariants in the seesaw model can be related to those of the low-energy effective theory. The basic relation is eq. (2.11), which relates the neutrino mass matrices in the seesaw model to the Majorana mass matrix $m_{5}$ in the low-energy effective theory. Clearly, the relations between the invariants cannot be polynomial, since inverse powers of $M$ are involved, but one can write the low-energy invariants in terms of a rational function of the high-energy invariants. The basic identities are:

$$
\begin{align*}
\operatorname{det} A A^{-1} & =\langle A\rangle-A \\
\operatorname{det} A & =\frac{1}{2}\langle A\rangle^{2}-\frac{1}{2}\left\langle A^{2}\right\rangle \tag{7.10}
\end{align*}
$$

for $2 \times 2$ matrices, and

$$
\begin{align*}
\operatorname{det} A A^{-1} & =A^{2}-A\langle A\rangle-\frac{1}{2}\left\langle A^{2}\right\rangle+\frac{1}{2}\langle A\rangle^{2} \\
\operatorname{det} A & =\frac{1}{3}\left\langle A^{3}\right\rangle-\frac{1}{2}\left\langle A^{2}\right\rangle\langle A\rangle+\frac{1}{6}\langle A\rangle^{3} \tag{7.11}
\end{align*}
$$

for $3 \times 3$ matrices, which can be combined with

$$
\begin{equation*}
C_{5}=Y_{\nu}^{T} M^{-1} Y_{\nu}=Y_{\nu}^{T}\left(M^{*} M\right)^{-1} M^{*} Y_{\nu} \tag{7.12}
\end{equation*}
$$

to obtain the desired relations using $A=M^{*} M$, and substituting for $C_{5}$ (i.e. $m_{5}$ ) in the expressions for the low-energy invariants. The expressions are valid as long as $\operatorname{det} M^{*} M \neq$ 0 , i.e. as long as the singlet neutrinos are heavy and the transition to a low-energy effective theory is valid.

## 8 Conclusions

We have used the mathematics of invariant theory to classify the independent invariants of the Standard Model effective theory and its high-energy seesaw model and to study the non-trivial structure of relations (syzygies) among the invariant generators. The complete classification of invariants and the Hilbert series have been obtained for the Standard Model effective theory with a dimension-five Majorana neutrino mass operator. A complete solution also has been obtained for the renormalizable seesaw model with $n_{g}=n_{g}^{\prime}=2$ fermion generations. The lepton sector of the seesaw model involves three different mass matrices, the charged lepton mass matrix, the Dirac mass matrix of the weakly-interacting doublet neutrinos and the Majorana mass matrix of the gauge-singlet neutrinos. The invariant structure is very complicated. In the case of $n_{g}=n_{g}^{\prime}=3$ generations of fermions, we have been unable to find the Hilbert series for the invariant generators, and thus the structure of the syzygy relations for three generations remains an open problem.

## Acknowledgments

AM would like to thank Professor Nolan Wallach for extensive discussions on invariant theory. The three-family neutrino problem led to a related computation of invariants of interest to mathematicians [28].

## References

[1] S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [SPIRES].
[2] C. Jarlskog, Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [SPIRES].
[3] O.W. Greenberg, Rephase invariant formulation of CP-violation in the Kobayashi-Maskawa framework, Phys. Rev. D 32 (1985) 1841 [SPIRES].
[4] I. Dunietz, O.W. Greenberg and D.-d. Wu, A priori definition of maximal CP-violation, Phys. Rev. Lett. 55 (1985) 2935 [SPIRES].
[5] E.E. Jenkins and A.V. Manohar, Rephasing invariants of quark and lepton mixing matrices, Nucl. Phys. B 792 (2008) 187 [arXiv:0706.4313] [SPIRES].
[6] M. Gell-Mann, P. Ramond and R. Slansky, Color embeddings, charge assignments and proton stability in unified gauge theories, Rev. Mod. Phys. 50 (1978) 721 [SPIRES].
[7] G.C. Branco and M.N. Rebelo, Leptonic CP violation and neutrino mass models, New J. Phys. 7 (2005) 86 [hep-ph/0411196] [SPIRES].
[8] G.C. Branco, M.N. Rebelo and J.I. Silva-Marcos, Leptogenesis, Yukawa textures and weak basis invariants, Phys. Lett. B 633 (2006) 345 [hep-ph/0510412] [SPIRES].
[9] L. Michel and L.A. Radicati, The geometry of the octet, Annales Poincaré Phys. Theor. 18 (1973) 185 [SPIRES].
[10] L. Michel, Minima of Higgs-Landau polynomials, contribution to Colloquium on fundamental interactions in honor of Antoine Visconti, Marseille France (1979).
[11] T. Feldmann, M. Jung and T. Mannel, Sequential flavour symmetry breaking, Phys. Rev. D 80 (2009) 033003 [arXiv:0906.1523] [SPIRES].
[12] A. Kusenko and R. Shrock, General determination of phases in quark mass matrices, Phys. Rev. D 50 (1994) 30 [hep-ph/9310307] [SPIRES].
[13] A. Kusenko and R. Shrock, General determination of phases in leptonic mass matrices, Phys. Lett. B 323 (1994) 18 [hep-ph/9311307] [SPIRES].
[14] H.K. Dreiner, J.S. Kim, O. Lebedev and M. Thormeier, Supersymmetric Jarlskog invariants: the neutrino sector, Phys. Rev. D 76 (2007) 015006 [hep-ph/0703074] [SPIRES].
[15] S. Davidson and R. Kitano, Leptogenesis and a Jarlskog invariant, JHEP 03 (2004) 020 [hep-ph/0312007] [SPIRES].
[16] R. Goodman and N.R. Wallach, Representations and invariants of the classical groups, Encyclopedia of Mathematics and its Applications 68, Cambridge University Press, Cambridge U.K. (1998).
[17] H. Kraft and C. Procesi, Classical invariant theory, a primer, (1996) http://www.math.unibas.ch/~kraft/Papers/KP-Primer.pdf.
[18] H. Derksen and H. Kraft, Algébre non commutative, groupes quantiques et invariants, Reims (1995) pg. 221, Sémin. Congr. 2, Soc. Math. France, Paris (1997).
[19] R. Wiegand, What is a Syzygy?, Not. Am. Math. Soc. 53 (2006) 456.
[20] A. Santamaria, Masses, mixings, Yukawa couplings and their symmetries, Phys. Lett. B 305 (1993) 90 [hep-ph/9302301] [SPIRES].
[21] A. Broncano, M.B. Gavela and E.E. Jenkins, The effective Lagrangian for the seesaw model of neutrino mass and leptogenesis, Phys. Lett. B 552 (2003) 177 [Erratum ibid. B 636 (2006) 330] [hep-ph/0210271] [SPIRES].
[22] Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].
[23] H. Weyl, The classical groups, their invariants and representations, Princeton University Press, Princeton U.S.A. (1939).
[24] F. Knop and P. Littelmann, Der grad erzeugender funktionen von invariantenringen, Math. Z. 196 (1987) 211.
[25] M. Gronau, A. Kfir and R. Loewy, Basis independent tests of CP-violation in fermion mass matrices, Phys. Rev. Lett. 56 (1986) 1538 [SPIRES].
[26] G.C. Branco, L. Lavoura and M.N. Rebelo, Majorana neutrinos and CP-violation in the leptonic sector, Phys. Lett. B 180 (1986) 264 [SPIRES].
[27] G.C. Branco, T. Morozumi, B.M. Nobre and M.N. Rebelo, A Bridge between CP violation at low-energies and leptogenesis, Nucl. Phys. B 617 (2001) 475 [hep-ph/0107164] [SPIRES].
[28] A. Garsia, N. Wallach, G. Xin and M. Zabrocki, Hilbert series of invariants, constant terms, and Kostka-Foulkes polynomials, to be published.


[^0]:    ${ }^{1}$ For example, the chiral Lagrangian is a polynomial in the quark mass matrix $M$.

[^1]:    ${ }^{2}$ The $\vartheta$ angles multiplying $F \tilde{F}$ terms are not to be confused with angles $\theta$ of the quark and lepton mixing matrices. There are no instantons in the $\mathrm{U}(1)$ sector, but the $\vartheta$ angle can have physical consquences in the presence of topological defects.

[^2]:    ${ }^{3}$ There are $n_{g}$ phases each in $\Phi_{U}$ and $\Phi_{D}$, but the transformation $\Phi_{U}=\Phi_{D} \propto \mathbb{1}$ leaves $V_{\mathrm{CKM}}$ invariant.

[^3]:    ${ }^{4}$ The use of the same symbols $\theta_{i}$ for the quark and lepton sectors should cause no confusion, since we do not need to deal with mixing in both sectors simultaneously.

[^4]:    ${ }^{5}$ A reductive group is defined by the property that every representation is completely reducible. A Lie group which is a direct product of simple compact Lie groups and $U(1)$ factors is reductive, as is any finite group.

[^5]:    ${ }^{6}$ One could equally well work with the Yukawa matrices, which differ by factor $v / \sqrt{2}$.

[^6]:    ${ }^{7}$ It is worth emphasizing that in our notation $m_{\nu}$ refers to the Dirac mass matrix $m_{\nu}=Y_{\nu} v / \sqrt{2}$, not the Majorana mass matrix $m_{5}$ of the effective theory.

