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1 Introduction

Flavor violation of quarks and leptons by Standard Model weak interactions is parameter-

ized by unitary 3×3 matrices, the CKM matrix in the quark sector and the PMNS matrix

in the lepton sector. The fundamental parameters in the Standard Model are the quark

and charged lepton Yukawa coupling matrices and the flavor matrix of the dimension-five

Majorana mass operator for neutrinos [1]. The fermion masses and mixing angles are de-

rived quantities, obtained from the eigenvalues and eigenvectors of the flavor matrices in
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the low-energy theory. In the mass eigenstate basis, one still has the freedom to make

phase rotations on the fermions fields, which leads to the redefinition of the CKM matrix

V → e−iΦUV eiΦD (1.1)

in the quark sector, where ΦU = diag(φu, φc, φt) and ΦD = diag(φd, φs, φb). Physical

quantities are basis independent, and must be invariant under the rephasing eq. (1.1).

CKM rephasing invariants have been studied extensively in the literature [2–5], the best-

known example being the CP -odd Jarlskog invariant J = ImV11V22V
∗
12V

∗
21. Rephasing

invariance also exists for the lepton mixing matrix. In a previous paper [5], we extended

the analysis of rephasing invariants to give a complete classification of these invariants for

the Standard Model, and for the seesaw model [6].

The parameterization of the flavor structure in terms of masses and mixing angles is

convenient for computing decay rates and scattering amplitudes. However, if one wants to

understand the origin of flavor structure, the more fundamental quantities are the flavor

matrices in the Lagrangian from which the masses and mixing angles are derived by diag-

onalization. A well-known difficulty is that the flavor matrices are basis-dependent, since

one can make unitary transformations on the quark and lepton fields in the Lagrangian.

For example, the Yukawa matrix for charge 2/3 quarks transforms as

YU → UUc
T YU UQ (1.2)

where UQ and UUc are unitary transformations on the quark doublet and singlet fields.

Observable quantities must be independent of this change of basis, i.e. invariant under

eq. (1.2), and such quantities are sometimes referred to as weak basis invariants [7, 8]. One

can check the predictions of a flavor model by comparing invariant quantities with their

corresponding experimental values.

Classifying invariants also is important in analyzing theories which explain flavor by a

dynamical mechanism. Examples of this type were studied in the early literature on unified

theories [9, 10] in the context of understanding gauge symmetry breaking patterns by

minimizing Higgs potentials. A recent example from flavor physics needing the classification

of invariants can be found in ref. [11].

There is an extensive literature on quark and lepton invariants (see, e.g. [7, 8, 12–15]).

The main emphasis in previous work has been the study of CP violation. CP -violating

invariants analogous to the Jarlskog invariant were written down. The vanishing of the

CP -violating invariants was sufficient to guarantee the vanishing of CP violation in the

CKM and PMNS mixing matrices.

In this paper, we take a different approach, studying all the invariants, and treating

the problem using the methods of invariant theory [16–18], which considers the ring of

polynomials that are invariant under the action of a group. Polynomial invariants also are

the relevant objects for physics applications, since an effective Lagrangian is written as a

polynomial in the basic variables which describe the theory.1 A basic result of invariant

theory is that the ring of invariants has a finite number of generators. There can be

1For example, the chiral Lagrangian is a polynomial in the quark mass matrix M .
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non-trivial relations among the invariants, known as syzygies [19], so that the invariant

ring need not be a free ring. The number of invariants of a given degree is encoded in

the Hilbert series. The complete classification of the invariant ring is, in general, a very

difficult computational problem.

We study the invariants of the Standard Model low-energy theory and the seesaw

theory in both the quark and lepton sectors. In the quark sector, the complete structure

of the invariant ring is given, and the relation between the polynomial invariants and

rephasing invariants also is given. The structure of the invariant ring in the lepton sector is

considerably more involved than in the quark sector. The classification of lepton invariants

is given for the low-energy effective Standard Model theory for two and three generations.

For the high-energy seesaw theory, the classification is given for two generations. For three

generations, we have been unable to completely classify all the relations or to determine the

Hilbert series because the problem is computationally too difficult. The simpler invariants

(i.e. of small degree) are given for this case.

The paper is organized as follows. Section 2 defines the high-energy seesaw theory and

its low-energy effective theory. The flavor-symmetry breaking matrices and ϑ-angles of each

theory are given, together with their transformation properties under flavor symmetry

and CP . Section 3 defines the mass and mixing matrices of the high-energy and low-

energy theories, explains the counting of mixing angles and phases, and discusses rephasing

invariance. Section 4 provides a brief introduction to the mathematics of invariant theory

that we need for our analysis. Section 5 reviews the classification of the quark mass matrix

invariants. Sections 6 and 7 consider the classification of lepton mass matrix invariants for

two and three generations of fermions, respectively, in both the low-energy effective theory

and the seesaw theory.

2 Flavor symmetries

We consider the SU(3) × SU(2) × U(1) gauge theory with ng generations of Standard

Model fermions and n′g generations of gauge singlet fermions (neutrino singlets). The

fermion multiplets are Qi = (3,2)1/6, U
c
i = (3̄,1)−2/3, D

c
i = (3̄,1)1/3, Li = (1,2)−1/2 and

Eci = (1,1)1, i = 1, . . . , ng, and N c
I = (1,1)0, I = 1, . . . , n′g. All fermion multiplets are

left-handed Weyl fields. The fermion multiplets with n′g = ng have a natural embedding

in the 16 spinor representation of SO(10).

The flavor symmetry of the fermion sector of the high-energy theory is SU(ng)
5 ×

U(n′g)×U(1)2, since there is a separate SU(ng) flavor symmetry for each of the five multi-

plets Q, U c, Dc, L and Ec, a U(n′g) flavor symmetry for the singlets N c, and two additional

non-anomalous U(1) flavor symmetries. Out of the six possible U(1) symmetries, only three

linear combinations are non-anomalous under SU(3) × SU(2)× U(1): N c number which is

included in U(n′g), (B −L), and (Ec +Dc −U c) number. The three additional anomalous

U(1) groups can be treated as symmetries if the three ϑ-angles2 ϑ3,2,1 of the SU(3), SU(2)

2The ϑ angles multiplying FF̃ terms are not to be confused with angles θ of the quark and lepton mixing

matrices. There are no instantons in the U(1) sector, but the ϑ angle can have physical consquences in the

presence of topological defects.
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and U(1) gauge groups transform under arbitrary chiral phase transformations ψ → eiαψψ

on the fields ψ = Q, U c, Dc, L and Ec as

ϑ3 → ϑ3 − ng (2αQ + αUc + αDc) ,

ϑ2 → ϑ2 − ng (3αQ + αL) , (2.1)

ϑ1 → ϑ1 − ng

(

1

6
αQ +

4

3
αUc +

1

3
αDc +

1

2
αL + αEc

)

.

Eq. (2.1) does not depend on n′g or αNc , since N c are gauge singlets. With the transforma-

tion eq. (2.1), the chiral flavor symmetry becomes U(ng)
5 × U(n′g), with a separate flavor

factor for each of the six fermion multiplets.

The U(ng)
5 × U(n′g) flavor symmetry of the fermion and gauge kinetic energy terms

is explicitly broken by gauge-invariant renormalizable terms — Yukawa couplings between

fermion multiplets and the Higgs doublet and Majorana mass terms of the fermion singlets.

The flavor symmetry-breaking Lagrangian is given by

L = −U ci (YU)ij QjH −Dc
i (YD)ij QjH

†

−Eci (YE)ij LjH
† −N c

I (Yν)Ij LjH

−1

2
N c
IMIJN

c
J + h.c., (2.2)

where H = (1, 2)1/2 is the Higgs doublet, and gauge and Lorentz indices have been sup-

pressed. The Yukawa couplings YU,D,E are ng ×ng matrices, whereas the neutrino Yukawa

coupling Yν is an n′g×ng matrix. The singlet neutrino Majorana mass matrix M is a sym-

metric n′g × n′g matrix. In the Standard Model without neutrino singlets, renormalizable

terms proportional to Yν and M are absent.

Under the chiral flavor symmetry transformations ψ → Uψ ψ, where Uψ are unitary

matrices in flavor space for the fermion fields ψ = Q, U c, Dc, L, Ec and N c, the Yukawa

coupling matrices, the Majorana mass matrix and the ϑ angles transform as

YU → UUcT YU UQ,
YD → UDcT YD UQ,
YE → UEcT YE UL,
Yν → UNc

T Yν UL,
M → UNc

T M UNc ,

ϑ3 → ϑ3 − 2 arg detUQ − arg detUUc − arg detUDc ,
ϑ2 → ϑ2 − 3 arg detUQ − arg detUL, (2.3)

ϑ1 → ϑ1 −
1

6
arg detUQ − 4

3
arg detUUc −

1

3
arg detUDc −

1

2
arg detUL − arg detUEc.

Under CP , each matrix is transformed to its complex conjugate, and each ϑ angle changes sign,

YU,D,E,ν → Y ∗
U,D,E,ν ,

M → M∗ ,

ϑ1,2,3 → −ϑ1,2,3 . (2.4)
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Under the chiral flavor symmetry transformation, the ϑ angles are shifted by eq. (2.3).

The invariant angle ϑ̄QCD is defined by

ϑ̄QCD = ϑ3 + arg detYU + arg detYD . (2.5)

The analogous angles ϑ̄1,2 can not be separately defined, but one can define an invariant

ϑ-parameter in the electroweak sector

ϑ̄EW = ϑ2 + 2ϑ1 +
8

3
arg detYU +

2

3
arg detYD + 2arg detYE . (2.6)

After electroweak symmetry breaking, the QED ϑ-angle is 2ϑ̄QED = ϑ̄EW. The factor

of two arises because the generators for a non-abelian gauge theory are normalized to

TrT aT b = δab/2.

In the absence of electroweak symmetry breaking, there are n′g massive Majorana

neutrino singlets with masses of O(M), the heavy Majorana neutrino mass scale, and all

other fermions are strictly massless. It is natural that M be of order the GUT scale, the

scale at which the GUT gauge symmetry breaks to the Standard Model gauge group, under

which the N c fields are uncharged. When the Higgs field gets a vacuum expectation value

v/
√

2, the Yukawa matrices generate Dirac mass matrices for the quarks and leptons,

mU,D,E,ν = YU,D,E,ν
v√
2
, (2.7)

with the same flavor transformation properties as the Yukawa couplings. The Dirac and

Majorana mass matrices of the (ng + n′g) left-handed neutrino fields combine to form a

neutrino mass term

− 1

2
NI (MN )IJ NJ , 1 ≤ I,J ≤ ng + n′g (2.8)

where the (ng+n′g)× (ng+n′g) neutrino mass matrix MN is equal to the symmetric matrix

MN ≡
(

0 mν
T

mν M

)

. (2.9)

The (ng+n
′
g) neutrino fields NI are (νi, N

c
I ). The (ng+n

′
g) mass eigenstates of eq. (2.9) give

the Majorana mass-eigenstate neutrino fields, which are linear combinations of νi and N c
I .

The heavy neutrinos with masses O(M) are predominantly N c with an O(v/M) admixture

of ν, and the light neutrinos with masses O(v2/M) are predominantly ν with an O(v/M)

admixture of N c.

A low-energy effective field theory can be obtained from the seesaw theory by integrat-

ing out the n′g heavy Majorana neutrino mass eigenstates. In this low-energy theory, the

leading flavor symmetry-breaking Lagrangian is given by

LEFT=−U ci (YU )ij QjH −Dc
i (YD)ij QjH

† − Eci (YE)ij LjH
† +

1

2
(LiH) (C5)ij (LjH) + h.c.,

(2.10)
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where the coefficient of the dimension-five operator [1] is given by

C5 = Y T
ν M−1 Yν (2.11)

to lowest order in the 1/M expansion. When the electroweak gauge symmetry breaks, the

dimension-five operator yields an effective ng × ng Majorana mass matrix

m5 = −C5v
2/2 (2.12)

for the (primarily) weak doublet neutrinos. Under the flavor symmetries and CP , the

flavor matrices YU,D,E and ϑ angles ϑ1,2,3 of the low-energy effective theory transform

under chiral flavor symmetry and CP as in eq. (2.3) and eq. (2.4), respectively, whereas

C5 transforms as

C5 → ULT C5 UL,
C5 → C∗

5 , (2.13)

respectively.

We will analyze the flavor structure of both the seesaw theory and its low-energy

effective theory. The analysis depends only on the flavor transformation properties of the

Yukawa coupling and Majorana mass matrices (i.e. the fermion mass matrices). Thus,

it applies to any theory which has Dirac and Majorana mass matrices with the same

transformation properties as given here, regardless of whether the Dirac mass terms are

proportional to Yukawa couplings in the theory, or are generated by some mechanism from

more fundamental parameters of the theory.

3 Masses, mixing angles and phases

In this section, we define the mass and mixing parameters of the high-energy seesaw theory

and its low-energy effective theory. Most of the section is a review of well-known results,

and serves to define the parameters and notation which are needed later. The mass matrices

of the high and low energy theories in the weak eigenstate basis are transformed to the mass

eigenstate basis by flavor rotations to obtain the fermion masses and mixing matrices. The

counting of mixing angles and phases for the case n′g = ng follows the analysis of ref. [5].

The counting of physical parameters is given here for the cases n′g > ng and n′g < ng, for

completeness. An alternative way of counting parameters, analogous to the counting of

Goldstone bosons, is given in refs. [20, 21].

Any complex matrix M can be written in the form M = U Λ U
′ where U and U

′ are

unitary matrices, and Λ is a diagonal matrix with real, non-negative entries. If M is also

a symmetric matrix, then it can be written in the form M = MT = U
T Λ U, where U is a

unitary matrix.

– 6 –
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3.1 High-energy theory

The flavor matrices of the high-energy seesaw theory are written in eq. (2.2) in the weak

eigenstate basis. These flavor matrices are related to the mass eigenstate basis by

YU = UUc ΛU UU ,

YD = UDc ΛD UD,

YE = UEc ΛE UE,

Yν = UNc Λν Uν,

M = U
′
Nc

T
ΛN U

′
Nc, (3.1)

where ΛU,D,E, Λν and ΛN are ng ×ng, n
′
g ×ng and n′g ×n′g diagonal matrices respectively,

with real, non-negative entries; UUc,Dc,Ec and UU,D,E,ν are ng × ng unitary matrices, and

UNc and U
′
Nc are n′g × n′g unitary matrices, which transform the mass eigenstate basis

to the weak eigenstate basis. Performing the chiral flavor transformation eq. (2.3) with

UUcT = UU
−1, UDcT = UD

−1, UEcT = UE
−1, UQ = UU

−1, UL = UE
−1, and UNc = U

′
Nc

−1

brings the flavor matrices to the form

YU = ΛU ,

YD = ΛD V −1
CKM,

YE = ΛE ,

Yν = W−1 Λν V,

M = ΛN , (3.2)

where VCKM ≡ UUUD
−1, V ≡ UνUE

−1 and W ≡ UNc
−1 (U′

Nc)
T are the three unitary ma-

trices which describe flavor mixing in the seesaw theory. VCKM is the Cabibbo-Kobayashi-

Maskawa mixing matrix in the quark sector. As is well-known, this ng × ng matrix corre-

sponds to the mismatch between the unitary field redefinitions on U and D in the quark

doublets Q required to diagonalize YU and YD. V is the analogue of the CKM matrix in the

lepton sector; it is the ng × ng matrix corresponding to the mismatch between the unitary

field redefinitions on ν and E in the lepton doublets L required to diagonalize Yν and YE.

W is an n′g×n′g mixing matrix in the lepton sector corresponding to the mismatch between

the unitary field redefinitions on N c required to diagonalize M and Yν .

To proceed further, it is necessary to consider the three cases n′g = ng, n
′
g < ng and

n′g > ng individually. We first specialize to the case n′g = ng considered previously in

ref. [5] and review the analysis given there. The analysis is then generalized to the cases

n′g 6= ng. The quark sector only depends on the number of quark generations ng, but the

lepton sector analysis depends on whether n′g = ng, n
′
g < ng or n′g > ng.

3.1.1 n′g = ng

The real diagonal matrices ΛU,D,E,ν,N are invariant under the rephasings,

Λψ → e−iΦψ Λψ e
iΦψ , ψ = U,D,E,

Λν → e−iΦν Λν e
iΦν ,

ΛN → ηN ΛN ηN , (3.3)
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Matrices Masses Angles Phases

ΛU ng 0 0

ΛD ng 0 0

VCKM 0 1
2ng(ng − 1) 1

2 (ng − 1)(ng − 2)

Total 2ng
1
2ng(ng − 1) 1

2 (ng − 1)(ng − 2)

Table 1. Parameters in the quark sector for ng generations. The ΛU and ΛD rows give the

parameters if YU or YD are considered separately, and the third row gives the additional parameters

if both YU and YD are considered together. There are (ng − 1)2 mixing parameters (angles plus

phases), and a total of (ng
2 + 1) parameters.

where ΦU,D,E,ν are real diagonal matrices, and ηN is a diagonal matrix with allowed eigen-

values ±1. Only ±1 rephasings are allowed for the Majorana fields N c. Under these

rephasings, the mixing matrices VCKM, V and W transform as

VCKM → e−iΦU VCKM eiΦD ,

V → e−iΦν V eiΦE ,

W → e−iΦν W ηN . (3.4)

Quark sector. The parameter counting in the quark sector is well-known, and is summa-

rized here for completeness. The matrices ΛU and ΛD each contain ng eigenvalues, which

correspond to the U -quark and D-quark masses, respectively, and are CP even. The quark

mixing matrix VCKM is an ng × ng unitary matrix with ng
2 parameters. It is conventional

to divide these parameters into angles and phases — angles are even under CP , whereas

phases are odd under CP . If the VCKM matrix is CP invariant, it is an ng × ng real or-

thogonal matrix with ng(ng−1)/2 parameters. The unitary matrix VCKM has ng(ng−1)/2

angles and ng(ng + 1)/2 phases, and can be parametrized by

eiχ eiΦ V(θi, δi) e
iΨ , (3.5)

where χ is an overall phase, Φ = diag(0, φ2, . . . , φng ), and Ψ = diag(0, ψ2, . . . , ψng). The

phase redefinitions ΦU and ΦD of VCKM in eq. (3.4) can be chosen to remove the 2ng − 1

phases χ, φi, ψi, i = 2, . . . , ng.
3 Thus, VCKM has ng(ng+1)/2−(2ng−1) = (ng−1)(ng−2)/2

net phases. This counting of parameters is summarized in table 1.

We choose a parameterization VCKM = V(θi, δi) in terms of a standard functional form

V, where the ng(ng−1)/2 angles θi ∈ [0, π/2] and the (ng−1)(ng−2)/2 phases δi ∈ [0, 2π).

The CKM matrix for ng = 3 is given by [22]

V(θ12, θ13, θ23, δ) ≡







1 0 0

0 c23 s23
0 −s23 c23













c13 0 s13e
−iδ

0 1 0

−s13eiδ 0 c13













c12 s12 0

−s12 c12 0

0 0 1






(3.6)

where si ≡ sin θi and ci ≡ cos θi. It is now conventional to call the angles θ23, θ13, θ12 rather

than θ1, θ2, θ3. The standard form eq. (3.6) has detV = 1.

3There are ng phases each in ΦU and ΦD, but the transformation ΦU = ΦD ∝ 1 leaves VCKM invariant.
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Lepton sector. The matrices ΛN and ΛE each have ng eigenvalues which are CP

even. The lepton mixing matrices V and W are ng × ng unitary matrices, which can

be parametrized by

V = eiχ eiΦ V(θi, δi) e
iΨ/2,

W = eiχ
′

eiΦ
′ V(θ′i, δ

′
i) e

iΨ′/2. (3.7)

We use the same standard functional form V as for the quark sector, but with different

numerical values for the arguments θi and δi.
4 The factor of two in Ψ and Ψ′ will be

explained below.

The rephasing transformations Φν , ΦE and ηN of eq. (3.4) can be used to (i) eliminate

χ, χ′ and ψi, (ii) restrict ψ′
i to the range [0, 2π) rather than [0, 4π), and (iii) eliminate

either Φ or Φ′, but not both. It is convenient to use the same domain [0, 2π) for all phases,

which is why Ψ′ was scaled by a factor of 2.

First consider amplitudes which depend only on Yν and YE, but not on M . In this

case, the mixing matrix W is no longer observable and can be set to unity. The mixing

matrix V has (2ng−1) allowed phase redefinitions: n from Φν , n from ΦE, and minus one,

because Φν = ΦE ∝ 1 does not change V . Thus, the parameter counting for the mixing

matrix V is identical to that for VCKM in the quark sector, with ng(ng − 1)/2 angles, and

(ng − 1)(ng − 2)/2 phases. Similarly, for amplitudes depending only on M and Yν and

not on YE, the mixing matrix V is no longer observable and can be set to unity. The

mixing matrix W has ng allowed phase redefinitions Φν . Thus, there are ng(ng − 1)/2

angles and ng(ng + 1)/2 − ng = ng(ng − 1)/2 phases. If the three matrices M , Yν and YE
are considered together, then the mixing matrices V and W together can have 2ng allowed

phase redefinitions due to Φν and ΦE . As compared with the case of only V or only W ,

where there were 2ng − 1 + ng phase redefinitions possible, we have (ng − 1) fewer phase

redefinitions, and hence (ng − 1) additional observable phases. These (ng − 1) additional

phases occur because the same phase redefinition Φν was present for both V and W , and

so cannot be chosen to remove phases from both V and W . Thus, there are an additional

(ng − 1) phases if all three mass matrices are considered together. These phases can be

included in either V or W . The standard form of the mixing matrices which uses the Φν

phases to eliminate the Φ phases from V is given by

V = V(θi, δi),

W = e−iΦ̄ V(θ′i, δ
′
i) e

iΨ′/2, (3.8)

whereas the standard form of the mixing matrices which uses the Φν phases to eliminate

the Φ′ phases from W is given by

V = eiΦ̄ V(θi, δi),

W = V(θ′i, δ
′
i) e

iΨ′/2. (3.9)

4The use of the same symbols θi for the quark and lepton sectors should cause no confusion, since we

do not need to deal with mixing in both sectors simultaneously.
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Matrices Masses Angles Phases

ΛN ng 0 0

Λν ng 0 0

ΛE ng 0 0

V : Yν , YE 0 1
2ng(ng − 1) 1

2 (ng − 1)(ng − 2)

W : M,Yν 0 1
2ng(ng − 1) 1

2ng(ng − 1)

Φ̄ 6∝ 1 0 0 ng − 1

Total 3ng ng(ng − 1) ng(ng − 1)

Table 2. Parameters in the lepton sector for n′
g = ng generations. The ΛN , Λν and ΛE rows give

the parameters if M or Yν or YE are considered separately. The V and W rows give the additional

parameters if both Yν and YE , or both M and Yν are considered together, respectively. The last

row gives the additional parameters to those in the previous rows when all three matrices M , Yν

and YE are considered together. There are 2ng(ng −1) mixing parameters (angles and phases), and

a total of ng(2ng + 1) parameters.

Matrices Masses Angles Phases

ΛN n′g 0 0

Λν n′g 0 0

ΛE ng 0 0

V : Yν , YE 0 1
2ng(ng − 1) 1

2ng(ng − 1) − n′g + 1

W : M,Yν 0 1
2n

′
g(n

′
g − 1) 1

2n
′
g(n

′
g − 1)

Φ̄ 6∝ 1 0 0 n′g − 1

Ung−n′

g
0 1

2 (ng − n′g)(ng − n′g − 1) 1
2(ng − n′g)(ng − n′g + 1)

Total ng + 2n′g ngn
′
g − n′g ngn

′
g − ng

Table 3. Parameters in the lepton sector for ng fermion generations and n′
g < ng neutrino singlets.

The total number of parameters is equal to the sum of the first six rows minus the last row. The

parameters in Ung−n′

g
are removed from V .

In eq. (3.8), V has the canonical CKM form with ng(ng−1)/2 angles θi and (ng−1)(ng−2)/2

phases δi, whereas in eq. (3.9), W has the canonical PMNS form with ng(ng − 1)/2 angles

θ′i and ng(ng − 1)/2 phases consisting of the (ng − 1)(ng − 2)/2 phases δi and the (ng − 1)

phases ψ′
i. In either basis, there are (ng − 1) additional phases Φ̄ ≡ Φ − Φ′ which cannot

be removed, and are observable. This parameter counting for n′g = ng is summarized in

table 2.

ϑ angles. Once the mixing matrices have been put in standard form, one can perform

additional phase rotations which leave the mixing matrices invariant to eliminate ϑ angles.

The only allowed transformation is an overall phase rotation with ΦU = ΦD = φQ 1, i.e.
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Matrices Masses Angles Phases

ΛN n′g 0 0

Λν ng 0 0

ΛE ng 0 0

V : Yν , YE 0 1
2ng(ng − 1) 1

2(ng − 1)(ng − 2)

W : M,Yν 0 1
2n

′
g(n

′
g − 1) 1

2n
′
g(n

′
g + 1) − ng

Φ̄ 6∝ 1 0 0 ng − 1

Un′

g−ng 0 1
2 (n′g − ng)(n

′
g − ng − 1) 1

2(n′g − ng)(n
′
g − ng + 1)

Total 2ng + n′g ngn
′
g − ng ngn

′
g − ng

Table 4. Parameters in the lepton sector for ng fermion generations and n′
g > ng neutrino singlets.

The total number of parameters is equal to the sum of the first six rows minus the last row. The

parameters in Un′

g
−ng

are removed from W .

baryon number. Under this phase transformation,

ϑ3 → ϑ3,

ϑ2 → ϑ2 − 3ngφQ,

ϑ1 → ϑ1 +
3

2
ngφQ . (3.10)

The transformation leaves ϑ3 and ϑ2 + 2ϑ1 unchanged, so there are two physical ϑ angles

remaining: ϑQCD, the strong interaction CP -angle in the basis where the quark mass

matrices are real and diagonal, and ϑEW = ϑ2 + 2ϑ1, the electroweak CP -angle in the

basis where the quark and charged lepton mass matrices are real and diagonal.

3.1.2 n′g < ng

For n′g < ng, the n′g × ng diagonal matrix Λν can be written as

Λν ≡
[

Λ̄ν 0
]

, (3.11)

where 0 denotes the n′g × (ng − n′g) zero matrix, and Λ̄ν is a diagonal n′g × n′g matrix with

n′g real non-negative eigenvalues. This matrix is invariant under

[

Λ̄ν 0
]

→ e−iΦν
[

Λ̄ν 0
]

[

eiΦν 0

0 Ung−n′

g

]

, (3.12)

where Ung−n′

g
denotes an arbitrary (ng − n′g) × (ng − n′g) unitary matrix. The rephasing

transformations of the lepton mixing matrices are

V →
[

e−iΦν 0

0 U−1
ng−n′

g

]

V eiΦE ,

W → e−iΦν W ηN , (3.13)

instead of eq. (3.4).

– 11 –



J
H
E
P
1
0
(
2
0
0
9
)
0
9
4

The additional unitary transformation matrix in eq. (3.13) can be used to eliminate

parameters in V . The parameter counting for n′g < ng is summarized in table 3. The

number of CP -even parameters is (ngn
′
g +ng +n′g) and the number of CP -odd parameters

is (ngn
′
g − ng), consistent with the results of ref. [21].

3.1.3 n′g > ng

For n′g > ng, the n′g × ng diagonal matrix Λν can be written as

Λν ≡
[

Λ̄ν
0

]

, (3.14)

where 0 denotes the (n′g − ng)× ng zero matrix, and Λ̄ν is a diagonal ng × ng matrix with

ng real positive eigenvalues. This matrix is invariant under

[

Λ̄ν
0

]

→
[

e−iΦν 0

0 Un′

g−ng

] [

Λ̄ν
0

]

eiΦν ,

(3.15)

where Un′

g−ng denotes an arbitrary (n′g − ng) × (n′g − ng) unitary matrix. The rephasing

transformation of the lepton mixing matrices is

V → e−iΦν V eiΦE ,

W →
[

e−iΦν 0

0 Un′

g−ng

]

W ηN , (3.16)

instead of eq. (3.4).

The additional unitary transformation matrix in eq. (3.16) can be used to eliminate

parameters in W . The parameter counting for n′g > ng is summarized in table 4. The

number of CP -even parameters is (ngn
′
g +ng +n′g) and the number of CP -odd parameters

is (ngn
′
g − ng), consistent with the results of ref. [21].

3.2 Low-energy effective theory

The flavor matrices in the low-energy effective theory are written in eq. (2.10) in the weak

eigenstate basis. These matrices are related to the mass eigenstate basis by

YU = UUc ΛU UU ,

YD = UDc ΛD UD,

YE = UEc ΛE UE,

C5 = U
′T
ν Λ5 U

′
ν. (3.17)

Performing chiral flavor transformations in the low-energy theory with UUcT = UUc
−1,

UDcT = UDc
−1, UEcT = UEc

−1, UQ = UU
−1, UL = UE

−1 brings the flavor matrices to
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the form

YU = ΛU ,

YD = ΛD V −1
CKM,

YE = ΛE ,

C5 =
(

U−1
PMNS

)T
Λ5 U

−1
PMNS, (3.18)

where VCKM ≡ UUUD
−1 and U

−1
PMNS ≡ U

′
νUE

−1 are the two unitary matrices which describe

flavor mixing in the low-energy effective theory. VCKM is the CKM mixing matrix in the

quark sector. UPMNS is the PMNS mixing matrix in the lepton sector, which is the lepton

mixing matrix which is physically measurable at low energies.

The real diagonal matrices ΛU,D,E,5 are invariant under the rephasings

Λψ → e−iΦψ Λψ e
iΦψ , ψ = U,D,E,

Λ5 → ην Λ5 ην , (3.19)

which correspond to arbitrary phase redefinitions of the fermion mass eigenstate fields U c,

Dc, Ec, U , D and E, and the discrete rephasings ν → ηνν, where ην is a diagonal matrix

with allowed eigenvalues ±1 for the low-energy Majorana neutrino fields. Under these

rephasings, the mixing matrices of the effective theory transform as

VCKM → e−iΦU VCKM eiΦD ,

UPMNS → e−iΦE UPMNS ην . (3.20)

The quark mixing matrix VCKM has the angles and phases given in table 1 as before.

The counting of parameters in the lepton sector is summarized in table 5, and is well-known.

UPMNS contains ng(ng − 1)/2 angles θi. The number of phases of UPMNS is ng(ng + 1)/2

minus the ng phase redefinitions ΦE, for a total of ng(ng − 1)/2 phases consisting of

(ng − 1)(ng − 2)/2 phases δi and (ng − 1) phases ψi. The canonical parametrization of

UPMNS is

UPMNS = V(θi, δi) e
iΨ/2 , (3.21)

Ψ = diag(0, ψ2, . . . , ψn).

For ng = 3, the low-energy lepton mixing matrix is given by

UPMNS = V
(

θ
(U)
1 , θ

(U)
2 , θ

(U)
3 , δ(U)

)

×







1 0 0

0 eiψ
(U)
2 /2 0

0 0 eiψ
(U)
3 /2






, (3.22)

where the superscript (U) denotes quantities in the PMNS matrix.

4 Invariant theory

In the previous sections, we have discussed the parameters (masses, angles and phases) for

the low- and high-energy theories. We would like to analyze the theories using invariant
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Matrices Masses Angles Phases

ΛE ng 0 0

Λ5 ng 0 0

UPMNS 0 1
2ng(ng − 1) 1

2ng(ng − 1)

Total 2ng
1
2ng(ng − 1) 1

2ng(ng − 1)

Table 5. Parameters in the lepton sector of the low-energy effective theory for ng generations. The

ΛE and Λ5 rows give the parameters if mE or m5 are considered separately. The UPMNS row gives

the mixing angles and phases of the PMNS mixing matrix.

quantities written directly in terms of the original parameters of the theory, the matrices

YU,D,E,ν and M . The structure of the invariants is highly non-trivial, and depends in an

interesting way on the number of generations.

To study the invariants, it is useful to introduce several mathematical results from

invariant theory [16–18]. The general problem is the following: one has a set of variables

x1, . . . xn which transform (reducibly or irreducibly) under the action of a group G. The set

of polynomials in {xi} with complex coefficients form a ring C[x1, . . . , xn]. The polynomial

ring C[x1, . . . , xn] is a free ring on the generators x1, . . . , xn, i.e. it is given by taking linear

combinations of all possible products of powers of the generators with coefficients in C, and

there are no non-trivial relations among the generators.

The ring C[x1, . . . , xn]
G ⊆ C[x1, . . . , xn] is the set of G-invariant polynomials, i.e.

those polynomials which are unchanged by the action of G. This is clearly a ring, since

sums and products of invariant polynomials are also invariant polynomials. A highly non-

trivial result, if G is a reductive group,5 is that C[x1, . . . , xn]
G is finite generated. Let

the generators be I1, . . . , Ir, each of which is a G-invariant polynomial in the original

variables x1, . . . , xn. Then, any G-invariant polynomial can be written as a polynomial P ∈C[I1, . . . , Ir]. However, C[x1, . . . , xn]
G need not be a free ring in the generators I1, . . . , Ir;

there can be non-trivial relations among them.

In the following sections, we analyze the invariant ring for the quark and lepton sectors

of the Standard Model effective theory and the seesaw model. It is useful to first look at

some simple examples before discussing the case of interest. We start with a famous result

on symmetric polynomials, and then discuss three examples involving continuous groups

which are closer in structure to the quark and lepton invariant problem. The first model is

a theory which has a freely generated ring, with no relations. The second theory has one

non-trivial relation, and is similar in structure to the ring for quark invariants for three

generations studied in section 5.2 and for lepton invariants in the Standard Model for two

generations studied in section 6.1. The third example is only slightly more complicated,

but leads to an intricate structure of invariants, with many relations, and a complicated

5A reductive group is defined by the property that every representation is completely reducible. A Lie

group which is a direct product of simple compact Lie groups and U(1) factors is reductive, as is any finite

group.
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Hilbert series. This is similar to what we find for lepton invariants in the Standard Model

for three generations, and in the seesaw model for two and three generations.

4.1 Symmetric polynomials

The classic example from invariant theory is the study of symmetric polynomials. The

permutation group Sn acts on a polynomial f(x1, . . . , xn) in C[x1, . . . , xn] by

p : f(x1, . . . , xn) → f(xp(1), . . . , xp(n)) (4.1)

where (p(1), . . . , p(n)) is a permutation of (1, . . . , n). A polynomial in C[x1, . . . , xn]
Sn is

invariant under the action of any permutation. A standard result [23] is that the invariant

ring is generated by the elementary symmetric polynomials

I1 = x1 + x2 + · · · xn =
∑

i

xi,

I2 = x1x2 + x1x3 + · · · + xn−1xn =
∑

i<j

xixj,

I3 = x1x2x3 + · · · + xn−2xn−1xn =
∑

i<j<k

xixjxk,

...

In = x1x2 . . . xn. (4.2)

In other words, any symmetric polynomial f(x1, . . . , xn) can be written as a polynomial in

I1, . . . , In, f(x1, . . . , xn) = g(I1, . . . , In), e.g.

x2
1 + x2

2 + · · · x2
n = I2

1 − 2I2 . (4.3)

The important point is that g(I1, . . . , In) is a polynomial — otherwise the result would

be trivial, for knowing I1, . . . , In, one could solve eq. (4.2) to find x1, . . . , xn, and hence

determine f .

4.2 Model I

Consider a theory with two couplings m1 and m2 which transform under a G = U(1)×U(1)

symmetry as

m1 → eiφ1m1, m2 → eiφ2m2 . (4.4)

We look at the ring C[m1,m
∗
1,m2,m

∗
2]

U(1)×U(1) of all polynomials which are U(1) × U(1)

invariant. It is clear that they can be written as linear combinations of monomials of

the form

(m1m
∗
1)
r1 (m2m

∗
2)
r2 (4.5)

where r1 and r2 are integers. Thus, the ring of invariant polynomials is generated by the

invariants I1 = m1m
∗
1 and I2 = m2m

∗
2, and there are no relations between these generators.
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The Hilbert series H(q) is defined as

H(q) =
∞
∑

r=0

crq
r (4.6)

where cr is the number of invariants of degree r, and c0 = 1. In our example, c1 = 0; c2 = 2

since m1m
∗
1 and m2m

∗
2 are the two degree-two invariants; c3 = 0; c4 = 3 since (m1m

∗
1)

2,

(m1m
∗
1)(m2m

∗
2) and (m2m

∗
2)

2 are the three degree-four invariants; and so on. It is easy to

see that the Hilbert series is

H(q) = 1 + 2q2 + 3q4 + 4q6 + 5q8 + · · ·

=

∞
∑

n=0

(n+ 1)q2n

=
1

(1 − q2)2
. (4.7)

Another derivation of the Hilbert series is the following. The generators I1 = m1m
∗
1

and I2 = m2m
∗
2 are both of degree two, and the invariants of higher order are given by

multiplying together arbitrary powers of I1 and I2. The product

(

1 + I1 + I2
1 + · · ·

) (

1 + I2 + I2
2 + · · ·

)

(4.8)

gives each invariant once, which leads to the Hilbert series

H(q) =
(

1 + q2 + q4 + · · ·
) (

1 + q2 + q4 + · · ·
)

=
1

(1 − q2)2
, (4.9)

in agreement with eq. (4.7).

In the general case of a semisimple Lie group, it is known that H(q) has the ratio-

nal form

H(q) =
N(q)

D(q)
, (4.10)

where the numerator N(q) and denominator D(q) are polynomials. Furthermore, the

numerator is of degree dN and is of the form

N(q) = 1 + c1q + · · · cdN−1q
dN−1 + qdN (4.11)

where the coefficients are non-negative, cr ≥ 0, and N(q) is palindromic, i.e.

N(q) = qdNN(1/q), (4.12)

or, more simply stated,

cr = cdN−r. (4.13)

The denominator takes the form

D(q) =

p
∏

r=1

(1 − qdr), (4.14)
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and is of degree dD =
∑

r dr. The number of denominator factors p is equal to the number

of parameters. The number of parameters is defined as the minimal codimension of an

orbit, and agrees with the usual physics usage of the term.

Model I has p = 2 parameters, because we start with four objects m1, m2, m
∗
1 and

m∗
2 (or equivalently, the real and imaginary parts of m1 and m2), and have two phase

redefinitions eq. (4.4), which eliminates two variables. In other words, one can always

make a phase redefinition to make m1 and m2 real and non-negative, and these are the

two independent parameters. In our example, N(q) = 1, d1 = d2 = 2 and the number of

denominator factors is two. The number of denominator factors p is equal to the number

of parameters.

There is a theorem due to Knop [24] which says that

dimV ≥ dD − dN ≥ p (4.15)

where dimV is the dimension of the vector space on which the group transformations act;

dD and dN are the degrees of the denominator and numerator; and p is the number of

parameters. In most cases, the upper bound is an equality, but not always. (We will see

an example for the quark invariants involving only the U -quark mass matrix.) In Model I,

the vector space basis is m1, m
∗
1, m2, m

∗
2, so dimV = 4, p = 2, dN = 0 and dD =

∑

dr = 4,

and we see that Knop’s theorem gives 4 ≥ 4−0 ≥ 2, with an equality for the upper bound.

One also can construct a multi-graded Hilbert series. Let cr1r2r3r4 be the number of

invariants of order r1 in m1, order r2 in m∗
1, order r3 in m2, and order r4 in m∗

2. Then

h(q1, q2, q3, q4) =
∑

cr1r2r3r4q
r1
1 q

r2
2 q

r3
3 q

r4
4 =

1

(1 − q1q2)(1 − q3q4)
, (4.16)

and the usual Hilbert series is H(q) = h(q, q, q, q). The multi-graded series gives more

information about the structure of the invariants. However, it is important to remember

that the results quoted above for H(q), eqs. (4.10)–(4.15), do not hold in general for the

multi-graded case.

The Hilbert series provides far more information than the number of invariants of

each degree, given by the series expansion eq. (4.6). It encodes the structure of the in-

variant ring and the form of the relations between invariants, as will be seen from the

examples considered below. Furthermore, the properties of the Hilbert series, such as

eqs. (4.13), (4.14), (4.15) provide a strong constraint on the number of invariants. Com-

puting invariants to high orders is, in general, a difficult task (i.e. the problem is not of

polynomial complexity). One can determine the Hilbert series, and hence the invariants to

arbitrarily high order, by computing some of the expansion coefficients cr, and using the

constraints on the Hilbert series to determine H(q). There is no systematic procedure for

doing this. One computes the number of invariants cr of degree r for some values of r,

which provide clues to the form of the numerator and denominator of the Hilbert series.

Eventually, only a unique possible answer remains.
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4.3 Model II

Consider a theory with couplings m1 and m2 with charges one and two, respectively, under

a G = U(1) symmetry,

m1 → eiφm1, m2 → e2iφm2 . (4.17)

The ring of invariant polynomials C[m1,m
∗
1,m2,m

∗
2]

U(1) is generated by the four basic

invariants I1 = m1m
∗
1, I2 = m2m

∗
2, I3 = m2m

∗2
1 and I4 = m∗

2m
2
1. These generators,

however, are not all independent, since I3I4 = I2
1I2, so that C[m1,m

∗
1,m2,m

∗
2]

U(1) is not a

free ring generated by I1 through I4.

It is straightforward to show that the multi-graded Hilbert series is

h(q1, q2, q3, q4) =
1 − q21q

2
2q3q4

(1 − q1q2)(1 − q3q4)(1 − q3q
2
2)(1 − q4q

2
1)
, (4.18)

where q1, q2, q3 and q4 count powers of m1, m
∗
1, m2 and m∗

2, respectively.

The denominator of the multi-graded Hilbert series is generated by the invariants I1
through I4, whereas the numerator compensates for the fact that I3I4 = I2

1I2 counts as

only one invariant at order q21q
2
2q3q4. The numerator of the multi-graded Hilbert series

does not have the special properties of the numerator of the Hilbert series H(q) discussed

in the previous example.

In this example, dimV = 4, dimG = 1, and there are three parameters since the phase

transformation eq. (4.17) eliminates one of the original four real variables in m1 and m2.

The Hilbert series H(q) = h(q, q, q, q) is

H(q) =
1 + q3

(1 − q2)2(1 − q3)
, (4.19)

which has a palindromic numerator with dN = 3, and a denominator with dD = 7, and

p = 3 is equal to the number of denominator factors and to the number of parameters.

Knop’s theorem gives 4 ≥ 7 − 3 ≥ 3, with an equality for the upper bound.

Expanding eq. (4.19) in a series in q gives the number of invariants of each degree. We

see that there are two generators of degree two, I1 and I2, and one generator of degree

three, which can be chosen to be I3+I4, corresponding to the denominator factors (1−q2)2
and (1− q3), respectively. Expanding out the denominator would give a coefficient of q3 of

+1. There are two invariants of degree three, I3 ± I4. The missing degree-three invariant

I3 − I4 is counted by the +q3 term in the numerator, so that the coefficient of q3 in the

expansion of H(q) is 2. When the denominator factors are expanded in a series, they can

occur to any power, so one can have arbitrary powers of I1, I2 and I3 + I4. However, the q3

factor in the numerator occurs only once. This means that powers of I3 − I4 higher than

the first can all be eliminated in terms of polynomials P (I1, I2, I3 + I4) which have already

been included. This statement follows from the identity

(I3 − I4)
2 = (I3 + I4)

2 − 4I3I4 = (I3 + I4)
2 − 4I2

1I2. (4.20)

There exists a similar identity for the Jarlskog invariant which will be derived in section 5.
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The generator I3 + I4 of the denominator is not homogeneous in the multi-grading; I3
is of degree q3q

2
2 and I4 is of degree q4q

2
1, which is why eq. (4.18) can not be written in a

form similar to eq. (4.19) with positive coefficients in the numerator and one less generator

in the denominator.

4.4 Model III

Consider yet another model with three couplings m1, m2 and m3 with charges 1, 2 and 3,

respectively, under a U(1) symmetry,

m1 → eiφm1, m2 → e2iφm2, m3 → e3iφm3 . (4.21)

The structure of the invariants is considerably more complicated than in the previous

examples, even though the theory is only slightly more complicated. All the invariant

polynomials are generated by thirteen invariant generators

I1 = m1m
∗
1,

I2 = m2m
∗
2,

I3 = m3m
∗
3,

I4 = m2
1m

∗
2,

I5 = m∗2
1 m2,

I6 = m3
1m

∗
3,

I7 = m∗3
1 m3,

I8 = m3
2m

∗2
3 ,

I9 = m∗3
2 m

2
3,

I10 = m1m2m
∗
3,

I11 = m∗
1m

∗
2m3,

I12 = m1m3m
∗2
2 ,

I13 = m∗
1m

∗
3m

2
2. (4.22)

There are 35 relations between products of invariants IiIj given by: I4I5 = I2
1I2, I4I7 =

I2
1I11, I4I8 = I2I

2
10, I4I9 = I2

12, I4I10 = I2I6, I4I11 = I1I12, I4I13 = I1I2I10, I5I6 = I2
1I10,

I5I8 = I2
13, I5I9 = I2I

2
11, I5I10 = I1I13, I5I11 = I2I7, I5I12 = I1I2I11, I6I7 = I3

1I3,

I6I8 = I3
10, I6I9 = I3I4I12, I6I11 = I1I3I4, I6I12 = I3I

2
4 , I6I13 = I1I

2
10, I7I8 = I3I5I13,

I7I9 = I3
11, I7I10 = I1I3I5, I7I12 = I1I

2
11, I7I13 = I3I

2
5 , I8I9 = I3

2I
2
3 , I8I11 = I2I3I13,

I8I12 = I2
2I3I10, I9I10 = I2I3I12, I9I13 = I2

2I3I11, I10I11 = I1I2I3, I10I12 = I2I3I4, I10I13 =

I1I8, I11I12 = I2I3I5, I11I13 = I2I3I5 and I12I13 = I1I
2
2I3. The new feature here is that

these relations are not independent — there are relations among the relations (known as

syzygies in the mathematics literature), e.g. multiplying both sides of I4I7 = I2
1I11 and

I5I6 = I2
1I10 gives

I4I5I6I7 = I4
1I10I11 , (4.23)

– 19 –



J
H
E
P
1
0
(
2
0
0
9
)
0
9
4

which is also obtained by multiplying the relations I4I5 = I2
1I2 and I6I7 = I3

1I3, and using

I10I11 = I1I2I3. The Hilbert series is

H(q) =
1 + q2 + 3q3 + 4q4 + 4q5 + 4q6 + 3q7 + q8 + q10

(1 − q2)2(1 − q3)(1 − q4)(1 − q5)
. (4.24)

Here dimV = 6, dimG = 1, and the number of parameters is 5. From the Hilbert series,

dN = 10, dD = 16, and p = 5. Knop’s theorem gives 6 ≥ 16 − 10 ≥ 5, with an equality for

the upper bound.

There are thirteen invariants in eq. (4.22). However, there are only five denominator

factors in eq. (4.24), so only five basic invariants, two of degree two, and one each of degrees

three, four and five, generate a free ring. The other invariants must satisfy non-trivial

relations (those given below eq. (4.22)), and this is reflected by the complicated numerator

in eq. (4.24), which implies that the invariant ring has a non-trivial structure, with many

relations. The different terms in the numerator show that there are many invariants which

can be eliminated when raised to higher powers, or multiplied by lower order invariants,

by relations analogous to eq. (4.20). There is one invariant of degree two (the +q2 term),

three in degree three (the +3q3 term), etc. This model shows that even a relatively simple

theory can lead to a set of invariants with a complicated syzygy structure. The number of

invariants and relations of each degree is encoded in the Hilbert series.

5 Quark invariants

We can now address the first problem of interest — flavor invariants in the quark sector.

We are interested in polynomials in mU , mU
†, mD and mD

† where

mU → UUcT mU UQ,
mD → UDcT mD UQ, (5.1)

under the chiral flavor transformations.6 To cancel UUc and UDc , one must consider

the combinations

XU ≡ mU
†mU ,

XD ≡ mD
†mD, (5.2)

which both transform as adjoints

XU,D → U†
Q XU,D UQ. (5.3)

Thus, the invariants are traces of products of XU and XD. The structure of the invariants

depends non-trivially on the number of generations, so we consider the cases ng = 2 and

ng = 3 separately.

6One could equally well work with the Yukawa matrices, which differ by factor v/
√

2.
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5.1 ng = 2

First, consider invariants involving only XU . The basic invariants are

〈XU 〉 , 〈XU
2〉 , 〈XU

3〉 , . . . (5.4)

where 〈∗〉 denotes a matrix trace. This series of traces terminates after ng terms for an

ng×ng matrix, by the Cayley-Hamilton theorem which states that every matrix satisfies its

characteristic equation. For an arbitrary 2×2 matrix A, the Cayley-Hamilton theorem gives

A2 = 〈A〉A+ 1
2

[

〈

A2
〉

− 〈A〉2
] 1. (5.5)

Taking the trace of both sides gives the trivial result
〈

A2
〉

=
〈

A2
〉

. Multiplying by A and

taking the trace implies

〈

A3
〉

= 3
2 〈A〉

〈

A2
〉

− 1
2 〈A〉

3 , (5.6)

so that 〈An〉, n ≥ 3 can be written in terms of 〈A〉 and 〈A2〉. Thus, there are two

independent invariants, I2,0 = 〈XU 〉 and I4,0 = 〈XU
2〉, which can be constructed from

XU alone. Both of these invariants are CP even. The two invariants contain the same

information as the eigenvalues of XU , i.e. the two U -type quark masses. For invariants

constructed only from mU , the number of parameters is p = 2, the two eigenvalues of XU .

The vector space has dimV = 8, because mU and mU
† are both 2 × 2 matrices, and I2,0

and I4,0 are of degree two and four, respectively, in mU , so the Hilbert series is

H(q) =
1

(1 − q2)(1 − q4)
. (5.7)

Here dN = 0, dD = 6 are the degrees of the numerator and denominator, respectively, and

the number of denominator factors is p = 2, which is equal to the number of parameters.

Knop’s theorem gives 8 ≥ 6 − 0 ≥ 2, which holds, but this time the upper bound is not

an equality.

Similarly, there are two independent CP -even invariants I0,2 = 〈XD〉 and I0,4 = 〈XD
2〉

which involve only XD. These two invariants contain the same information as the eigen-

values of XD, namely the two D-type quark masses.

Invariants containing both XU and XD can be written as traces of the form

〈XU
r1XD

s1XU
r2XD

s2 . . .〉 , (5.8)

for integers ri and si. The Cayley-Hamilton theorem for a 2 × 2 matrix, eq. (5.5), implies

that all powers ri and si greater than one in eq. (5.8) can be reduced, so we are left with

traces of the form

〈XUXD . . . XUXD〉 = 〈(XUXD)r〉 . (5.9)

Again, invariants with r > 1 can be rewritten in terms of lower order invariants, so there

is only one independent invariant, I2,2 = 〈XUXD〉, which is CP even.
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In summary, the basic quark invariants for ng = 2 quark generations, which generate

all the invariants, are:

I2,0 = 〈XU 〉 = 〈mU
†mU 〉 ,

I0,2 = 〈XD〉 = 〈mD
†mD〉 ,

I4,0 = 〈XU
2〉 = 〈

(

mU
†mU

)2
〉 ,

I2,2 = 〈XUXD〉 = 〈mU
†mUmD

†mD〉 ,

I0,4 = 〈XD
2〉 = 〈

(

mD
†mD

)2
〉 . (5.10)

Writing the invariants in terms of the usual quark masses and the Cabibbo angle gives

I2,0 = m2
u +m2

c ,

I0,2 = m2
d +m2

s,

I4,0 = m4
u +m4

c ,

I2,2 = m2
um

2
s +m2

cm
2
d + (m2

s −m2
d)(m

2
c −m2

u) cos2 θ,

I0,4 = m4
d +m4

s. (5.11)

Knowing the five invariants allows one to determine the four masses and θ, because mi ≥ 0,

and θ lies in the first quadrant.

Using u and d to count powers of mU and mD gives the multi-graded Hilbert series

h(u, d) =
1

(1 − u2)(1 − u4)(1 − d2)(1 − d4)(1 − u2d2)
.

(5.12)

The Hilbert series H(q) = h(q, q) is

H(q) =
1

(1 − q2)2(1 − q4)3
. (5.13)

In this example, p = 5 (four masses and one mixing angle, see table 1), dimV = 16, since

there are four 2 × 2 matrices, dN = 0, and dD = 16. The number of denominator factors

is the number of parameters, and Knop’s theorem gives 16 ≥ 16 − 0 ≥ 5, with the upper

bound an equality.

The denominator factors in eq. (5.13) show that there are two generators of degree

two, and three of degree four, which agrees with eq. (5.10).

If one started with XU and XD as the basic objects, then dimV = 8. In this case,

the Hilbert series is given by replacing q2 → q in eq. (5.13), since we now count powers

of XU ,XD rather than mU ,mD, so dN = 0, dD = 8 and Knop’s inequality becomes

8 ≥ 8 − 0 ≥ 5.

5.2 ng = 3

For an arbitrary 3 × 3 matrix A, the Cayley-Hamilton theorem states that

A3 = A2 〈A〉 − 1

2
A
[

〈A〉2 −
〈

A2
〉

]

+
1

6

[

〈A〉3 − 3
〈

A2
〉

〈A〉 + 2
〈

A3
〉

] 1. (5.14)
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Taking the trace of both sides gives the trivial result
〈

A3
〉

=
〈

A3
〉

. Multiplying by A and

taking the trace gives

〈

A4
〉

=
1

6
〈A〉4 − 〈A〉2

〈

A2
〉

+
4

3

〈

A3
〉

〈A〉 +
1

2

〈

A2
〉2
, (5.15)

so that 〈An〉, n ≥ 4 can be rewritten in terms of 〈A〉, 〈A2〉, and 〈A3〉.
Thus, the invariants involving XU alone are I2,0 = 〈XU 〉, I4,0 = 〈XU

2〉 and I6,0 =

〈XU
3〉, and invariants involving XD alone are I0,2 = 〈XD〉, I0,4 = 〈XD

2〉 and I0,6 = 〈XD
3〉,

all of which are CP even.

Invariants containing both XU and XD are of the form eq. (5.8), but now with ri = 1, 2

and si = 1, 2, so that one has traces of products of XU ,X
2
U ,XD,X

2
D. This restriction

still leads to an infinite number of invariants. However, many of these invariants are not

independent. For arbitrary 3 × 3 matrices A, B and C, one has the identity

0 = 〈A〉2 〈B〉 〈C〉 − 〈BC〉 〈A〉2 − 2 〈AB〉 〈A〉 〈C〉
−2 〈AC〉 〈A〉 〈B〉 + 2 〈ABC〉 〈A〉 + 2 〈ACB〉 〈A〉
−
〈

A2
〉

〈B〉 〈C〉 + 2 〈AB〉 〈AC〉 +
〈

A2
〉

〈BC〉
+2 〈C〉

〈

A2B
〉

+ 2 〈B〉
〈

A2C
〉

− 2
〈

A2BC
〉

−2
〈

A2CB
〉

− 2 〈ABAC〉 (5.16)

which can be derived by substituting A→ A+B + C into eq. (5.15), and picking out the

order A2BC terms. This identity eliminates 〈ABAC〉, i.e. traces where the same matrix is

repeated, so that in invariants eq. (5.8), XU , XU
2, XD and XD

2 can each occur at most

once. For example, 〈XU . . . XU . . .〉 can be replaced by
〈

X2
U . . .

〉

, and
〈

X2
U . . . X

2
U . . .

〉

can

be replaced by
〈

X4
U . . .

〉

, which can then be eliminated using eq. (5.14).

Writing out all of the possibilities gives the basic quark invariants for ng = 3 quark

generations. There are 11 CP -even invariants, ten of which are

I2,0 = 〈XU 〉 ,
I0,2 = 〈XD〉 ,
I4,0 = 〈XU

2〉 ,
I2,2 = 〈XUXD〉 ,
I0,4 = 〈XD

2〉 ,
I6,0 = 〈XU

3〉 ,
I4,2 = 〈XU

2XD〉 ,
I2,4 = 〈XUXD

2〉 ,
I0,6 = 〈XD

3〉 ,
I4,4 = 〈XU

2XD
2〉 , (5.17)

and one CP -odd invariant

I
(−)
6,6 = 〈XU

2XD
2XUXD〉 − 〈XD

2XU
2XDXU 〉 . (5.18)
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The eleventh CP -even invariant is

I
(+)
6,6 = 〈XU

2XD
2XUXD〉 + 〈XD

2XU
2XDXU 〉 . (5.19)

All the invariants in the quark sector can be written as polynomials in these basic invariants.

The multi-graded and one-variable Hilbert series are

h(u, d)=
1 + u6d6

(1−u2)(1−u4)(1−u6)(1−d2)(1−d4)(1−d6)(1−u2d2)(1−u4d2)(1−u2d4)(1−u4d4)
,

H(q) = h(q, q) =
1 + q12

(1 − q2)2(1 − q4)3(1 − q6)4(1 − q8)
, (5.20)

respectively. This case has p = 10 parameters, consisting of 6 masses, three angles and one

phase, which agrees with the number of denominator factors. The original variable space

has dimV = 36, from the two 3 × 3 mass matrices and their complex conjugates. The

degrees of the numerator and denominator are dN = 12 and dD = 48, respectively, and

Knop’s inequality is 36 ≥ 48 − 12 ≥ 10, which is satisfied, with the upper bound being an

equality. If one started with XU and XD as the basic objects, then dimV = 18, and the

Hilbert series is given by replacing q2 → q in eq. (5.20), so dN = 6, dD = 24, and Knop’s

inequality becomes 18 ≥ 24 − 6 ≥ 10.

The denominator of eq. (5.20) shows that there are two invariants of degree two, three

of degree four, four of degree six, and one of degree eight, which can occur multiplied in

arbitrary combinations, with no relations among them. One can see that their degrees

match the denominator factors in eq. (5.20). What about the remaining two invariants?

The numerator factor of eq. (5.20) shows that there is one additional invariant of degree

twelve other than those given by products of denominator factors. This is the CP -odd

invariant eq. (5.18). The Hilbert series implies that the other degree-twelve invariant,

eq. (5.19), cannot be an independent invariant. Indeed, it can be written as a polynomial

in the other CP -even invariants,

3I
(+)
6,6 = I3

2,0I
3
0,2 − I2,0I4,0I

3
0,2 − 3I2,2I

2
2,0I

2
0,2 + 3I4,2I2,0I

2
0,2 − I0,4I

3
2,0I0,2 + 3I2,4I

2
2,0I0,2

−3I4,4I2,0I0,2 + I0,4I6,0I0,2 + 3I2,4I4,2 + 3I2,2I4,4 + I0,6I2,0I4,0 − I0,6I6,0, (5.21)

and so can be eliminated.

The Hilbert series numerator only has an entry q12, but there is no q24 term. This

means that I
(−)
6,6 is an independent invariant, but the square and all higher powers of I

(−)
6,6

are not. The square of the CP -odd invariant I
(−)
6,6 is CP -even, and can be written as

a polynomial (with 241 terms out of a possible 305 terms) in the CP -even invariants of

eq. (5.17). The most general polynomial invariant in the quark sector can be written as

P1 + I
(−)
6,6 P2 (5.22)

where P1 and P2 are polynomials in the CP -even invariants eq. (5.17).

This example illustrates how the structure of the invariants is encoded in the Hilbert

series. For many purposes, the details of the relations, such as eq. (5.21), or the formula
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for
(

I
(−)
6,6

)2
are not important; all one needs to know is that I

(−)
6,6 occurs linearly, and I

(+)
6,6

can be eliminated.

The quark sector parameters are determined by the ten CP -even parameters I2,0,

I4,0, I6,0, I0,2, I0,4, I0,6, I2,2, I2,4, I4,2, I4,4, and the single CP -odd parameter I
(−)
6,6 . From

the CP -even invariants, one can determine the U -type quark masses mu,c,t and D-type

quark masses md,s,b, which are real and non-negative, and four combinations of the CKM

parameters, cos θ12, cos θ13, cos θ23 and cos δ, all of which are CP even. Since the CKM

angles θ12, θ13, θ23 lie in the first quadrant, these angles are determined uniquely by

their cosines. However, cos δ does not determine the phase δ uniquely, because it cannot

distinguish between δ and −δ. Under CP , δ ↔ −δ. Thus, one Z2 piece of information,

the sign of δ, is missing. This sign is provided by the invariant I
(−)
6,6 . The only information

needed is the sign of I
(−)
6,6 , which is why

(

I
(−)
6,6

)2
can be written in terms of the other CP -

even invariants. This discussion corresponds to the well-known result that the unitarity

triangle can be obtained by measuring the lengths of its sides, which are CP -conserving,

rather than the angles, which are CP -violating. Knowing the sides determines the triangle

up to a two-fold reflection ambiguity, which is fixed by the sign of I
(−)
6,6 , or, equivalently,

the sign of the Jarlskog invariant, so that the only additional information contained in the

Jarlskog invariant is the sign. The relations between the invariants are similar to those

obtained by studying rephasing invariants [5].

The invariant I
(−)
6,6 also can be written as

I
(−)
6,6 =

1

3

〈

[XU ,XD]3
〉

, (5.23)

and is proportional to the Jarlskog invariant J [2],

I
(−)
6,6 = 2iJ(m2

c −m2
u)(m

2
t −m2

c)(m
2
t −m2

u)(m
2
s −m2

d)(m
2
b −m2

s)(m
2
b −m2

d), (5.24)

where

J = Im (VCKM)11 (VCKM)∗12 (VCKM)22 (VCKM)∗21 . (5.25)

I
(−)
6,6 vanishes if two U -type quarks or two D-type quarks are degenerate. It is well-known

that quark CP violation vanishes for degenerate U -type or D-type quarks. I
(−)
6,6 is odd

under the exchange of two U -type or two D-type masses, e.g under mu ↔ mc, whereas

the invariants in eq. (5.17) are even under exchange, so I
(−)
6,6 cannot be written in terms of

the other invariants.
(

I
(−)
6,6

)2
is even under exchange, and can be written in terms of the

other invariants.

It is, of course, well-known that CP conservation in the quark sector requires J = 0, or

equivalently, I
(−)
6,6 = 0. What is new is the structure of the ring of all invariant polynomials,

and the relation between the CP -conserving and CP -violating invariants.

The invariants which must vanish in the quark sector for CP conservation was deter-

mined for an arbitrary number of generations in ref. [25].
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6 Lepton invariants for two generations

The structure of the lepton invariants, like the quark invariants, depends on the number of

generations, so we first consider the case of ng = 2 generations in this section. The case of

ng = 3 generations is considered in section 7. We will outline the derivation of the results,

but not give all the details.

6.1 The standard model effective theory

We now study the lepton invariants in the Standard Model low-energy effective theory with

a neutrino Majorana mass term. The structure of the lepton invariants is considerably more

complicated than the quark invariants. The lepton sector of the low-energy theory contains

the flavor symmetry breaking matrices YE and C5, so we are interested in polynomials in

mE , mE
†, m5 andm5

∗ = m5
†, since m5 is a symmetric matrix. These matrices transform as

mE → UEcT mE UL ,
mE

† → UEc† mE
† UL∗ ,

m5 → ULT m5 UL ,
m5

∗ → UL† m5
∗ UL∗ , (6.1)

under chiral flavor transformations. To cancel UEc , one must consider the combinations

XE ≡ mE
†mE,

X∗
E = XE

T ≡ mE
TmE

∗, (6.2)

which transform as

XE → U†
L XE UL,

XE
T → ULT XE

T UL∗ . (6.3)

It also is convenient to define

X5 ≡ m5
∗m5, (6.4)

which transforms as

X5 → UL† X5 UL , (6.5)

as well as
(

m5
∗ (XE

n)T m5

)

, which transforms as

(

m5
∗ (XE

n)T m5

)

→ UL†
(

m5
∗ (XE

n)T m5

)

UL. (6.6)

The invariants involving only XE are I2,0 = 〈XE〉 and I4,0 = 〈XE
2〉, whereas the

invariants involving only m5 and m5
∗ are I0,2 = 〈X5〉 and I0,4 = 〈X5

2〉.
The invariants involving XE , m5 and m5

∗ are of the form

〈m5
∗ (XE

r1)T m5 XE
s1 . . .m5

∗ (XE
rn)T m5 XE

sn〉 (6.7)
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for integers ri and si. The Cayley-Hamilton theorem implies that all powers ri and si
greater than one in eq. (6.7) can be rewritten in terms of lower order invariants. Thus,

one needs to consider traces of matrix products containing the matrices XE , X5, and
(

m5
∗ XE

T m5

)

at most once.

In summary, the generators of the invariants are:

I2,0 = 〈XE〉 = 〈mE
†mE〉 ,

I0,2 = 〈X5〉 = 〈m5
∗m5〉 ,

I4,0 = 〈XE
2〉 = 〈

(

mE
†mE

)2
〉 ,

I2,2 = 〈m5
∗ XE

T m5〉 = 〈m5 XE m5
∗〉 = 〈mE

T mE
∗ m5 m5

∗〉 = 〈mE
† mE m5

∗ m5〉 ,
I0,4 = 〈X5

2〉 = 〈(m5
∗m5)

2〉 ,
I4,2 = 〈m5

∗ XE
T m5 XE〉 = 〈m5

∗ mE
TmE

∗ m5 mE
†mE〉 , (6.8)

I
(−)
4,4 = 〈m5

∗ XE
T m5 XE m5

∗ m5〉 − 〈m5
∗ XE

T m5 m5
∗ m5 XE〉

= 〈m5
∗ mE

TmE
∗ m5 mE

†mE m5
∗ m5〉 − 〈m5

∗ mE
TmE

∗ m5 m5
∗ m5 mE

†mE〉 ,

where I
(−)
4,4 is CP odd, and the rest are CP even. The square of the CP -odd invariant,

(

I
(−)
4,4

)2
, is not independent; it can be expressed in terms of polynomials in the other

CP -even invariants. In addition, the CP -even invariant I
(+)
4,4 , obtained by the substitution

− → + in I
(−)
4,4 , is not independent, and thus is not included in the above list.

There are six parameters: four masses, one angle and one phase, see table 5. The four

masses, one mixing angle, and one phase, can be determined from I2,0, I4,0, I0,2, I0,4, I2,2
and I2,4 up to a sign ambiguity in the phase, just as for the case of three generations of

quarks already discussed. The sign of the phase is fixed by the sign of I
(−)
4,4 .

The multi-graded Hilbert series is

h(y, z) =
1 + y4z4

(1 − y2)(1 − y4)(1 − z2)(1 − z4)(1 − y2z2)(1 − y4z2)
, (6.9)

where y counts powers of mE and z counts powers of m5. The single variable Hilbert

series is

H(q) = h(q, q) =
1 + q8

(1 − q2)2(1 − q4)3(1 − q6)
. (6.10)

The q8 term in the numerator shows that there is one degree-eight invariant I
(−)
4,4 which

occurs, but that the square of this invariant is not independent and can be eliminated.

The number of denominator factors p = 6 is equal to the number of parameters, and

dN = 8, dD = 22. The number of variables is dimV = 14, since we have one 2 × 2 mass

matrix, one 2×2 symmetric mass matrix, and their complex conjugates. Knop’s inequality

14 ≥ 22 − 8 ≥ 6 is satisfied, with an equality for the upper bound. The six parameters

correspond to 2 charged lepton masses, 2 Majorana neutrino masses, one mixing angle and

one phase.
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The denominator of eq. (6.10) shows that there are two generators of degree two,

three of degree four, and one of degree six, which agrees with the CP -even invariants in

eq. (6.9). The numerator shows that there is an invariant of degree eight, whose square

can be eliminated, which is I
(−)
4,4 . The structure of the invariants for ng = 2 is similar to

that for quarks for ng = 3.

Weak-basis invariants for two generations in the low-energy effective theory were stud-

ied previously by Branco, Lavoura and Rebelo [26]. They defined an invariant Q, related

to I
(−)
4,4 by

2i Im TrQ = I
(−)
4,4 , (6.11)

and showed that Q = 0 is a necessary and sufficient condition for CP conservation. This

is consistent with our results, since the only CP -odd generating invariant is I
(−)
4,4 .

6.2 The seesaw model

In this section, we analyze the lepton invariants in the seesaw theory for ng = n′g = 2

generations of fermions. There are three matrices in the lepton sector, mν , mE and M ,

and their complex conjugates mν
†, mE

† and M † = M∗.7 From eq. (2.3), we see that only

mE transforms under UEc, so it must always occur in the combination

XE = mE
†mE , (6.12)

which transforms as

XE → U†
L XE UL (6.13)

under the chiral flavor symmetry transformations. The mass matrices mν , m
†
ν , M and M∗

transform as

mν → UNc
T mν UL,

m†
ν → UL† m†

ν UNc
∗,

M → UNc
T M UNc ,

M∗ → UNc
† M∗ UNc

∗ . (6.14)

It is useful to define

Xν ≡ m†
νmν ,

Zν = mνm
†
ν ,

Zν
T = Zν

∗ = m∗
νmν

T , (6.15)

which transform as

Xν → U†
L Xν UL,

Zν → UNc
T Zν UNc

∗,

Zν
T → UNc

† Zν
T UNc , (6.16)

7It is worth emphasizing that in our notation mν refers to the Dirac mass matrix mν = Yνv/
√

2, not

the Majorana mass matrix m5 of the effective theory.
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m†
ν XE mν

M∗ M

Figure 1. Graphical representation of the chiral transformation properties of the lepton mass

matrices XE , mν , m†
ν , M and M∗. A solid line represents UNc , and a dashed line UL. The

invariants are obtained by forming graphs with no external lines.

as well as

XN ≡ M∗M,

ZN = MM∗,

ZX = mν XEmν
† (6.17)

which transform as

XN → U†
Nc XN UNc ,

ZN → UNc
T ZN UNc

∗,

ZX → UNc
TZX UNc

∗. (6.18)

Note that ZN
T = ZN

∗ = XN .

The invariants involve three mass matrices, mE , mν and M . One first can consider the

simpler problem of studying invariants which only depend on two out of the three matrices.

The first case, invariants involving only mE and mν , consists of invariants formed from

traces of XE and Xν only, with no insertions of M or M∗. These invariants are the same

as the invariants in the quark sector with the substitutions XU → Xν and XD → XE . The

second case, invariants involving only mν and M , are invariants which do not contain XE .

These have the same structure as invariants constructed in the low-energy theory, with the

replacements m5 →M , mE → mT
ν , i.e. XE → ZTν .

The most general invariant involving all three matrices has the structure

〈M∗A1MAT2 . . .M
∗A2n−1MAT2n〉 , (6.19)

where Ai = 1 or Ai = mνP(XE ,Xν)mν
†, where P is a polynomial in XE and Xν . This

result can be obtained by representing the chiral transformations of the matrices graph-

ically, as shown in figure 1. Products of matrices such as eq. (6.19) also occurred when

studying rephasing invariants [5]. For rephasing invariants, one can factor long products

into smaller ones, each involving at most four mixing matrices, using reconnection identi-

ties. This factorization is no longer possible for the case of mass-matrix invariants, which

leads to an interesting and highly non-trivial structure for the invariants.

The basic invariants can be constructed using eq. (6.19) and eliminating higher powers

of matrices by the Cayley-Hamilton identity eq. (5.5). The generators are:

I2,0,0 = 〈XE〉 = 〈mE
†mE〉 , (6.20)

I0,2,0 = 〈Xν〉 = 〈mν
†mν〉 ,
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I0,0,2 = 〈XN 〉 = 〈M∗M〉 , (6.21)

I4,0,0 = 〈XE
2〉 = 〈mE

†mEmE
†mE〉 ,

I2,2,0 = 〈XνXE〉 = 〈mν
†mνmE

†mE〉 ,
I0,4,0 = 〈Xν

2〉 = 〈mν
†mνmν

†mν〉 ,
I0,2,2 = 〈ZνZN 〉 = 〈mνmν

†MM∗〉 ,
I0,0,4 = 〈XN

2〉 = 〈M∗MM∗M〉 ,
I2,2,2 = 〈ZXZN 〉 = 〈mνmE

†mEmν
†MM∗〉 ,

I0,4,2 = 〈M∗ZνMZν
T 〉 = 〈M∗mνmν

†Mmν
∗mν

T 〉 ,
I2,4,2 = 〈M∗ZνMZX

T 〉 = 〈M∗mνmν
†Mmν

∗mE
TmE

∗mν
T 〉 ,

I
(−)
2,4,2 = 〈M∗ZνZXM 〉 − 〈M∗ZXZνM〉

= 〈M∗mνmν
†mνmE

†mEmν
†M〉 − 〈M∗mνmE

†mEmν
†mνmν

†M〉 ,
I
(−)
0,4,4 = 〈ZNZνMZν

TM∗〉 − 〈M∗ZνZNMZν
T 〉

= 〈MM∗mνmν
†Mmν

∗mν
TM∗〉 − 〈M∗mνmν

†MM∗Mmν
∗mν

T 〉 ,
I4,4,2 = 〈M∗ZXMZX

T 〉
= 〈M∗mνmE

†mEmν
†Mmν

∗mE
TmE

∗mν
T 〉 ,

I
(−)
2,4,4 = 〈ZNZXMZν

TM∗〉 − 〈M∗ZXZNMZν
T 〉

= 〈MM∗mνmE
†mEmν

†Mmν
∗mν

TM∗〉 − 〈M∗mνmE
†mEmν

†MM †Mmν
∗mν

T 〉 ,
I
(−)
2,6,2 = 〈M∗ZνZXMZν

T 〉 − 〈M∗ZXZνMZν
T 〉

= 〈M∗mνmν
†mνmE

†mEmν
†Mmν

∗mν
T 〉 − 〈M∗mνmE

†mEmν
†mνmν

†Mmν
∗mν

T 〉 ,
I
(−)
4,4,4 =

〈

M∗ZNZXMZTX
〉

−
〈

M∗ZTXZNMZX
〉

,

I
(−)
4,6,2 =

〈

M∗ZνZXMZTX
〉

−
〈

M∗ZXZνMZTX
〉

. (6.22)

There are several invariants which can be immediately eliminated because they are poly-

nomials in lower order invariants and which have not been listed above. These invariants

include I
(+)
2,4,2, I

(+)
0,4,4, I

(+)
2,4,4, I

(+)
2,6,2, I

(+)
4,4,4 and I

(+)
4,6,2, which are related in an obvious way to the

invariants in eq. (6.22) with superscripts (−). The degree-eight invariants I
(+)
2,4,2 and I

(+)
0,4,4

are eliminated by the identities

0 = I0,0,2I
2
0,2,0I2,0,0 − I0,0,2I0,4,0I2,0,0 − 2I0,2,0I2,2,2 − 2I0,2,2I2,2,0 + 2I

(+)
2,4,2,

0 = I2
0,0,2I

2
0,2,0 − 2I0,0,2I0,4,2 − I0,0,4I

2
0,2,0 − 2I2

0,2,2 + 2I
(+)
0,4,4, (6.23)

and the degree-ten invariants I
(+)
2,4,4 and I

(+)
2,6,2 are eliminated by the identities

0 = I2
0,0,2I0,2,0I2,2,0 − 2I0,0,2I2,4,2 − I0,0,4I0,2,0I2,2,0 − 2I0,2,2I2,2,2 + 2I

(+)
2,4,4,

0 = I2
0,2,0I0,2,2I2,0,0 − 2I0,2,0I2,4,2 − I0,2,2I0,4,0I2,0,0 − 2I0,4,2I2,2,0 + 2I

(+)
2,6,2. (6.24)

The degree-twelve invariants I
(+)
4,4,4 and I

(+)
4,6,2 are also polynomials in lower order invariants,

but we do not include the explicit identities here.

In eq. (6.22), there are three CP -even invariants of degree two, five of degree four,

two of degree six, one of degree eight, and one of degree ten, for a grand total of 12 basic
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CP -even invariants. In addition, there are two CP -odd invariants of degree eight, two of

degree ten and two of degree twelve, for a total of 6 basic CP -odd invariants. All of the

invariants can be written as polynomials in these 18 basic invariants.

The multi-graded Hilbert series is

h(x, y, z) =
N

D
, (6.25)

N = 1 + 2x2y4z2 + y4z4 + x2y4z4 + x2y6z2 + x4y4z4 + x4y6z2 − x2y6z6 − x2y8z4

−x4y6z6 − x4y8z4 − x6y8z4 − 2x4y8z6 − x6y12z8,

D =
(

1 − x2
) (

1 − x4
) (

1 − y2
) (

1 − y4
) (

1 − z2
) (

1 − z4
) (

1 − x2y2
) (

1 − y2z2
)

×
(

1 − x2y2z2
) (

1 − y4z2
) (

1 − x4y4z2
)

,

where x, y, z count powers of mE, mν and M , respectively. The Hilbert series H(q) =

h(q, q, q) is

H(q) =
1 + q6 + 3q8 + 2q10 + 3q12 + q14 + q20

(1 − q2)3(1 − q4)5(1 − q6)(1 − q10)
, (6.26)

which has a palindromic numerator. The number of denominator factors p = 10 is equal to

the number of parameters, and dN = 20 and dD = 42. The number of variables is dimV =

22, because we have two 2 × 2 matrices with 4 independent entries, one 2 × 2 symmetric

matrix with 3 independent entries, and their complex conjugates. Knop’s inequality is

22 ≥ 42 − 20 ≥ 10, and the upper bound is an equality. The 10 parameters in the lepton

sector of the seesaw model for ng = n′g = 2 generations correspond to 2 charged lepton

masses, 4 Majorana neutrino masses of the two light and the two heavy neutrinos, 2 angles

and 2 phases.

One can see from the Hilbert series that the structure of invariants is far more com-

plicated than in the quark case. The denominator factors (1 − q2)3(1 − q4)5 of eq. (6.26)

corresponds to the generators I2,0,0, I0,2,0, I0,0,2, I4,0,0, I2,2,0, I0,4,0, I0,2,2, I0,0,4. At degree

six, in addition to products of lower order invariants, there are two new invariants, I2,2,2
and I0,4,2. These two invariants correspond to the (1 − q6) factor in the denominator,

and the +q6 term in the numerator. Since there is only one power of (1 − q6) factor in

the denominator, we know that there will be non-trivial relations involving the degree-six

invariants. At degree eight, there are 3 new invariants from the +3q8 term in the numer-

ator in addition to products of lower degree invariants which make up the denominator.

These are the three degree-eight invariants in eq. (6.22). There are three new invariants of

degree twelve (from the +3q12), but only two degree-twelve invariants in eq. (6.22). The

third degree-twelve invariant is the square of the degree-six invariant corresponding to the

+q6 term in the numerator, so the square of this CP -even invariant cannot be removed.

We have noted earlier that there must be non-trivial relations involving the degree-six
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invariants. These relations first occur at degree 14,

0 = I0,0,2I0,2,0I
(−)
2,6,2 + I2

0,2,0I
(−)
0,4,4I2,0,0 − I2

0,2,0I
(−)
2,4,4

−I0,2,0I0,2,2I(−)
2,4,2 − I0,2,0I

(−)
0,4,4I2,2,0 − 2I0,2,2I

(−)
2,6,2

−I0,4,0I(−)
0,4,4I2,0,0 + 2I0,4,0I

(−)
2,4,4 + 2I0,4,2I

(−)
2,4,2

0 = I2
0,0,2I0,2,0I

(−)
2,4,2 − I2

0,0,2I
(−)
2,6,2 + I0,0,2I0,2,0I

(−)
2,4,4

−I0,0,2I0,2,2I(−)
2,4,2 − I0,0,2I2,2,0I

(−)
0,4,4 − I0,0,4I0,2,0I

(−)
2,4,2

+2I0,0,4I
(−)
2,6,2 − 2I0,2,2I

(−)
2,4,4 + 2I2,2,2I

(−)
0,4,4, (6.27)

and are non-linear relations involving the two degree-six invariants. One can proceed

to higher degrees — there are six relations of degree 16, etc., and verify the number of

independent invariants at each degree agrees with eq. (6.26). The details of the relations

are not important. The main purpose of giving eq. (6.27) is to show that there can be

non-linear relations among the generating invariants. To completely unravel all of the non-

linear relations requires going beyond degree 20, the highest power of q in the numerator

of eq. (6.26).

7 Lepton invariants for three generations

In this section, we consider the lepton invariants in the low-energy and high-energy theories

for three generations of fermions. The number of invariants is far greater than for two

generations, and there are many relations between them. For the low-energy theory, we

give the Hilbert series, and the invariants which correspond to the denominator factors.

For three generations, even the Hilbert series proved too difficult to compute. For this

case, we make some general remarks, and discuss some invariants considered previously by

Branco et al. [26, 27], and by Davidson and Kitano [15].

7.1 The standard model effective theory

The invariants involving only XE are I2,0 = 〈XE〉, I4,0 = 〈XE
2〉 and I6,0 = 〈XE

3〉, whereas

the invariants involving only m5 and m5
∗ are I0,2 = 〈X5〉, I0,4 = 〈X5

2〉 and I0,6 = 〈X5
3〉.

The invariants involving XE , m5 and m5
∗ are of the form

〈m5
∗ (XE

r1)T m5 XE
s1 . . .m5

∗ (XE
rn)T m5 XE

sn〉 (7.1)

for integers ri and si. The Cayley-Hamilton theorem implies that all powers ri and

si greater than two in eq. (7.1) can be rewritten in terms of lower order invariants.

Thus, one needs to consider traces of matrix products containing the matrices XE , X5,
(

m5
∗ XE

T m5

)

, and
(

m5
∗
(

XE
2
)T

m5

)

at most twice. Identity eq. (5.16) cannot be used

to eliminate traces with multiple powers of m5, because 〈m5Am5B〉 gets converted to traces

of the form
〈

m2
5AB

〉

which are no longer invariant. There are many basic invariants, which

involve a single trace, up to degree m10
5 m

12
E , and we do not list them all here. The ones up
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to degree twelve, which are sufficient for the denominator of the Hilbert series (and hence

to determine the parameters) are:

I2,0 = 〈XE〉 = 〈mE
†mE〉 ,

I0,2 = 〈X5〉 = 〈m5
∗m5〉 ,

I4,0 = 〈XE
2〉 = 〈

(

mE
†mE

)2
〉 ,

I2,2 = 〈XEX5〉 = 〈mE
†mEm5

∗m5〉 ,
I0,4 = 〈X5

2〉 = 〈(m5
∗m5)

2〉 ,

I6,0 = 〈XE
3〉 = 〈

(

mE
†mE

)3
〉 ,

I ′4,2 = 〈XE
2X5〉 = 〈

(

mE
†mE

)2
m5

∗m5〉 ,
I4,2 = 〈m5

∗ XE
T m5 XE〉 = 〈m5

∗ mE
TmE

∗ m5 mE
†mE〉 ,

I2,4 = 〈XEX5
2〉 = 〈mE

†mE (m5
∗m5)

2〉 ,
I0,6 = 〈X5

3〉 = 〈(m5
∗m5)

3〉 ,

I6,2 = 〈m5
∗ XE

T m5 XE
2〉 = 〈m5

∗ mE
TmE

∗ m5

(

mE
†mE

)2
〉 ,

I
(±)
4,4 = 〈m5

∗ XE
T m5 m5

∗ m5 XE〉 ± 〈m5
∗ m5 m5

∗ XE
T m5 XE〉

= 〈m5
∗ mE

TmE
∗ m5 m5

∗ m5 mE
†mE〉 ± 〈m5

∗ m5 m5
∗ mE

TmE
∗ m5 mE

†mE〉 ,

I8,2 = 〈m5
∗ (XE

T )2 m5 XE
2〉 = 〈m5

∗
(

mE
TmE

∗
)2

m5

(

mE
†mE

)2
〉 ,

I
(±)
6,4 = 〈m5

∗ XE
T m5 m5

∗ m5 XE
2〉 ± 〈m5

∗ m5 m5
∗ XE

T m5 XE
2 〉

= 〈m5
∗ mE

TmE
∗ m5 m5

∗ m5

(

mE
†mE

)2
〉±〈m5

∗ m5 m5
∗ mE

TmE
∗ m5

(

mE
†mE

)2
〉 ,

I
(±)
8,4 = 〈m5

∗ (XE
T )2 m5 m5

∗ m5 XE
2 〉 ± 〈m5

∗ m5 m5
∗ (XE

T )2m5 XE
2〉

= 〈m5
∗
(

mE
TmE

∗
)2

m5 m5
∗ m5

(

mE
†mE

)2
〉

± 〈m5
∗ m5 m5

∗
(

mE
TmE

∗
)2
m5

(

mE
†mE

)2
〉 . (7.2)

The multi-graded Hilbert series is

h(y, z) =
N

D
,

N = −y24z18 − 2y20z14 − 2y20z12 − y20z10 − 2y18z14 − 3y18z12 − y18z10 − 3y16z14

−3y16z12 − 3y16z10 − y16z8 − y16z6 − y14z14 − y14z12 − y14z10 − 2y14z8

−y14z6 − y12z14 + y12z4 + y10z12 + 2y10z10 + y10z8 + y10z6 + y10z4 + y8z12

+y8z10 + 3y8z8 + 3y8z6 + 3y8z4 + y6z8 + 3y6z6 + 2y6z4 + y4z8 + 2y4z6

+2y4z4 + 1,

D =
(

1 − y2
) (

1 − y4
) (

1 − y6
) (

1 − z2
) (

1 − z4
) (

1 − z6
) (

1 − y2z2
) (

1 − y4z2
)2

×
(

1 − y2z4
) (

1 − y6z2
) (

1 − y4z4
) (

1 − y8z2
)

, (7.3)
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where y counts powers of mE and z counts powers of m5. The single-variable series H(q) =

h(q, q) is

H(q)= (7.4)

1+q6+2q8+4q10+8q12+7q14+9q16+10q18+9q20+7q22+8q24+4q26+2q28+q30+q36

(1 − q2)2 (1 − q4)3 (1 − q6)4 (1 − q8)2 (1 − q10)
.

The number of denominator factors p = 12 is equal to the number of parameters, and

dN = 36 and dD = 66. The number of variables is dimV = 30, because we have one 3 × 3

matrix with 9 independent entries, one 3×3 symmetric matrix with 6 independent entries,

and their complex conjugates. Knop’s inequality is 30 ≥ 66 − 36 ≥ 12, and the upper

bound is an equality. Note that the numerator is palindromic. The 12 parameters consist

of 3 charged lepton masses, 3 Majorana light neutrino masses, 3 angles and 3 phases.

The Hilbert series eq. (7.4) has a complicated numerator, which shows that the struc-

ture of the invariant ring is highly non-trivial. From the denominator of eq. (7.4), we see

that there are two generators of degree two, three of degree four, four of degree six, two of

degree eight, and one of degree 10, which can be multiplied freely, with no relations. These

account for most of the invariants in eq. (7.2), but there remains one CP -even invariant each

of degrees 6, 10, 12, and one CP -odd invariant each of degrees 8, 10, 12. These contribute

q6 + q8 + 2q10 + 2q12 to the numerator in eq. (7.4). The coefficient of q8 in the numerator

of eq. (7.4) is 2. Where does the other degree-eight invariant not in eq. (7.2) come from?

The degree-six invariant that corresponds to the numerator factor q6 can be multiplied by

either of the two degree invariants, I2,0 or I0,2, to give two additional degree-8 invariants.

One of these can be written as a polynomial in lower order invariants; the other survives.

One can continue this analysis to arbitrarily high order — the entire invariant structure is

encoded in a very compact way in the Hilbert series eq. (7.4). An explicit example of the

construction just discussed is given in section 6.2 for the high-energy theory with ng = 2,

which provides a simpler example of an invariant ring with non-trivial relations.

For three generations, Branco, Lavoura and Rebelo [26] defined four invariants:

2iI1 = I
(−)
4,4

2iI2 =
〈

XEm
∗
5m5m

∗
5m5m

∗
5X

T
Em5

〉

− c.c.

2iI3 =
〈

XEm
∗
5m5m

∗
5m5m

∗
5X

T
Em5m

∗
5m5

〉

− c.c.

2iI4 = det
[

m5XEm
∗
5 +m∗

5X
T
Em5

]

− c.c. (7.5)

of degrees (4, 4), (4, 6), (4, 8) and (6, 6), and showed that the vanishing of these invariants

implies CP conservation. The CP -violating invariants of eq. (7.2) correspond to the de-

nominator factors of the Hilbert series. There are additional CP -violating invariants not

listed which correspond to terms in the numerator.

7.2 The seesaw model

The invariants involve three mass matrices, mE, mν and M . One first can consider the

simpler problem of studying invariants which only depend on two out of the three matrices.

The first case, invariants involving only mE and mν , consists of invariants formed from

traces of XE and Xν only, with no insertions of M or M∗. These invariants are in direct
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analogy to the invariants of the quark sector with the substitutions XU → Xν and XD →
XE . The second case, invariants involving only mν and M , are invariants which do not

contain XE . These have the same structure as invariants constructed in the low-energy

theory, with the replacements m5 →M , mE → mT
ν , i.e. XE → ZTν .

The most general invariant involving all three matrices has the structure

〈M∗A1MAT2 . . .M
∗A2n−1MAT2n〉 , (7.6)

where Ai = 1 or Ai = mνP(XE ,Xν)mν
†, where P is a polynomial in XE and Xν . The

generating invariants are given by using eq. (7.6). In this case, there are a very large

number of generating invariants. They include all those discussed earlier in the seesaw

theory for two generations, as well as many other.

For ng = n′g = 3 generations, there are 21 parameters which consist of 9 masses, 6

angles and 6 phases. The 9 masses are the 3 charged lepton masses, 3 light Majorana

neutrino masses and 3 heavy Majorana neutrino masses. There are 3 angles in the mixing

matrix V and 3 angles in the mixing matrix W . There is one δ-type phase in V and in W ,

two Majorana phases Ψ′ in W , and 2 phases Φ̄ which are not removeable when V and W

are considered together.

We have been unable to construct the multi-graded and one-variable Hilbert series in

this case. However, it is clear that the structure of the invariant relations is extremely

complicated. There are a number of constraints on the form of the one-variable Hilbert

series. The denominator must be a product of p = 21 factors. The numerator must be

palindromic, and dN and dD must satisfy the Knop inequality 48 ≥ dD − dN ≥ 21 since

dimV = 48. The number of variables dimV = 48 results because there are two 3 × 3

matrices mE and mν with 9 independent entries each, one 3× 3 symmetric matrix M with

6 independent entries, and the complex conjugates of the three matrices.

Ref. [27] defined six invariants in the seesaw theory,

2iI1 =
〈

YνY
†
νM

∗MM∗(YνY
†
ν )TM

〉

− c.c.

2iI2 =
〈

YνY
†
νM

∗MM∗MM∗(YνY
†
ν )TM

〉

− c.c.

2iI3 =
〈

YνY
†
νM

∗MM∗MM∗(YνY
†
ν )TMM∗M

〉

− c.c. (7.7)

which involve CP -violating phases which are relevant for leptogenesis, as well as

2iĨ1 =
〈

YνXEY
†
νM

∗MM∗(YνXEY
†
ν )TM

〉

− c.c.

2iĨ2 =
〈

YνXEY
†
νM

∗MM∗MM∗(YνXEY
†
ν )TM

〉

− c.c.

2iĨ3 =
〈

YνXEY
†
νM

∗MM∗MM∗(YνXEY
†
ν )TMM∗M

〉

− c.c. (7.8)

which involve the other phases.

Ref. [15] defines an invariant

2iI1 =
〈

κ†κκ†(Y T
ν Y

∗
ν )−1κ(Y †

ν Yν)
−1
〉

(7.9)
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for leptogenesis, where κ ism5 with factors of the Higgs vacuum expectation value removed.

This is not a polynomial in the basic variables of the seesaw model. It can be related to

the invariants considered here using the formulæ given below.

Invariants in the seesaw model can be related to those of the low-energy effective

theory. The basic relation is eq. (2.11), which relates the neutrino mass matrices in the

seesaw model to the Majorana mass matrix m5 in the low-energy effective theory. Clearly,

the relations between the invariants cannot be polynomial, since inverse powers of M are

involved, but one can write the low-energy invariants in terms of a rational function of the

high-energy invariants. The basic identities are:

detA A−1 = 〈A〉 −A

detA =
1

2
〈A〉2 − 1

2

〈

A2
〉

(7.10)

for 2 × 2 matrices, and

detA A−1 = A2 −A 〈A〉 − 1

2

〈

A2
〉

+
1

2
〈A〉2

detA =
1

3

〈

A3
〉

− 1

2

〈

A2
〉

〈A〉 +
1

6
〈A〉3 (7.11)

for 3 × 3 matrices, which can be combined with

C5 = Y T
ν M

−1Yν = Y T
ν (M∗M)−1M∗Yν (7.12)

to obtain the desired relations using A = M∗M , and substituting for C5 (i.e. m5) in the

expressions for the low-energy invariants. The expressions are valid as long as detM∗M 6=
0, i.e. as long as the singlet neutrinos are heavy and the transition to a low-energy effective

theory is valid.

8 Conclusions

We have used the mathematics of invariant theory to classify the independent invariants

of the Standard Model effective theory and its high-energy seesaw model and to study the

non-trivial structure of relations (syzygies) among the invariant generators. The complete

classification of invariants and the Hilbert series have been obtained for the Standard

Model effective theory with a dimension-five Majorana neutrino mass operator. A complete

solution also has been obtained for the renormalizable seesaw model with ng = n′g = 2

fermion generations. The lepton sector of the seesaw model involves three different mass

matrices, the charged lepton mass matrix, the Dirac mass matrix of the weakly-interacting

doublet neutrinos and the Majorana mass matrix of the gauge-singlet neutrinos. The

invariant structure is very complicated. In the case of ng = n′g = 3 generations of fermions,

we have been unable to find the Hilbert series for the invariant generators, and thus the

structure of the syzygy relations for three generations remains an open problem.
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